A multichannel portable instrument for on-chip optical absorption spectroscopy is presented. The system can house photonic chips having up to 6 sensing sites operating in parallel, allowing real-time simultaneous detection of multiple chemicals. A 6-channel CMOS lock-in front-end performs the amplification and demodulation of the signals from the integrated light detectors, while an FPGA is chosen for signal acquisition and analysis. A digital real-time ratiometric processing cancels out the effect of laser power fluctuations to achieve high sensitivity in monitoring the presence of the analytes, as demonstrated with the detection of an acetone sample. Compact size for portability, real-time parallel detection and flexible FPGA processing make this system suitable for environmental investigations on many different pollutants, both in the near- and mid-infrared wavelength range.

6-channel CMOS-based instrument for optical absorption spectroscopy and chemical identification

Zanetto, F;Sampietro, M;Ferrari, G
2023-01-01

Abstract

A multichannel portable instrument for on-chip optical absorption spectroscopy is presented. The system can house photonic chips having up to 6 sensing sites operating in parallel, allowing real-time simultaneous detection of multiple chemicals. A 6-channel CMOS lock-in front-end performs the amplification and demodulation of the signals from the integrated light detectors, while an FPGA is chosen for signal acquisition and analysis. A digital real-time ratiometric processing cancels out the effect of laser power fluctuations to achieve high sensitivity in monitoring the presence of the analytes, as demonstrated with the detection of an acetone sample. Compact size for portability, real-time parallel detection and flexible FPGA processing make this system suitable for environmental investigations on many different pollutants, both in the near- and mid-infrared wavelength range.
2023
Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS)
978-1-6654-5109-3
CMOS lock-in amplifier
FPGA
optical absorption spectroscopy
integrated optics
ratiometric measurement
File in questo prodotto:
File Dimensione Formato  
6_channel_CMOS_based_instrument_for_optical_absorption_spectroscopy_and_chemical_identification.pdf

accesso aperto

Descrizione: Accepted manuscript
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1250001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact