The ability of airships to fly in hover is a major plus of this category of flying vehicles. However, especially for the case of autonomous flight, this feature can be exploited only recurring to a carefully designed layout of the thrusters on board. Furthermore, the thrusters need to be suitably governed by a dedicated control algorithm. This paper explores a scheme for the control in hover of a thrust-controlled airship without thrust vector control, also assessing its effectiveness in near-hover positioning problems. The control scheme proposed herein extends the capability of a stability augmentation and guidance controller for forward flight, previously introduced by the authors for a conceptually similar airship. A control action based on a system of thrust forces required for hover, and additional thrust components for stabilizing and steering the airship in slow (near-hover) navigation, is thoroughly described. The ensuing control suite is applied and tested in the present paper on the high-fidelity virtual model of a five-thruster airship, showing reasonable stability levels and navigation accuracy of the controlled system.

Autonomous Flight in Hover and Near-Hover for Thrust-Controlled Unmanned Airships

Riboldi, C. E. D.;Rolando, A.
2023-01-01

Abstract

The ability of airships to fly in hover is a major plus of this category of flying vehicles. However, especially for the case of autonomous flight, this feature can be exploited only recurring to a carefully designed layout of the thrusters on board. Furthermore, the thrusters need to be suitably governed by a dedicated control algorithm. This paper explores a scheme for the control in hover of a thrust-controlled airship without thrust vector control, also assessing its effectiveness in near-hover positioning problems. The control scheme proposed herein extends the capability of a stability augmentation and guidance controller for forward flight, previously introduced by the authors for a conceptually similar airship. A control action based on a system of thrust forces required for hover, and additional thrust components for stabilizing and steering the airship in slow (near-hover) navigation, is thoroughly described. The ensuing control suite is applied and tested in the present paper on the high-fidelity virtual model of a five-thruster airship, showing reasonable stability levels and navigation accuracy of the controlled system.
2023
airship, automatic flight control, autonomous flight, autonomous hover, autopilot, fixed-point guidance, lighter-than-air (LTA), navigation, near-hover, point-tracking control, stability augmentation, station keeping, terminal maneuver, thrust vector control, thrust-based control, thrust-controlled airship, unmanned air vehicle (UAV)
File in questo prodotto:
File Dimensione Formato  
RIBOC03-23.pdf

accesso aperto

: Publisher’s version
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1249299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact