In recent years the development of LVDC distribution networks is under consideration. DC electrical distributions offer several advantages compared to AC ones in many applications, in particular in the presence of energy storage systems and distributed generation like high efficacy, flexibility and simple integration of renewables. The DC distribution allows to integrate in a more efficient "microgrid" different sources with DC/DC converters. The article proposes an innovative model of microgrid configuration for aggregations of end-users able to share the power produced by common generators and energy services named by the authors Power Sharing Model (PSM) using a DC bus that connects in a one way approach, the common generators to the end-users. The article investigates on the different suggested configurations of the PSM, with the converter characteristics and controls. A simplified case study is analyzed to test the performance of the sharing model and the stability of the control in different scenarios. The article compares the PSM based on a LVDC grid with existing approaches of virtual aggregations, and it highlights the main differences between the currently existing methods and our new LVDC microgrid approach. The suggested PSM appears more efficient, convenient and flexible than the existing virtual models, because users physically self-consume and share the energy locally generated.
A New Proposal for Power Sharing in LVDC Energy Community Microgrids
Faranda RS;Oliva F;
2023-01-01
Abstract
In recent years the development of LVDC distribution networks is under consideration. DC electrical distributions offer several advantages compared to AC ones in many applications, in particular in the presence of energy storage systems and distributed generation like high efficacy, flexibility and simple integration of renewables. The DC distribution allows to integrate in a more efficient "microgrid" different sources with DC/DC converters. The article proposes an innovative model of microgrid configuration for aggregations of end-users able to share the power produced by common generators and energy services named by the authors Power Sharing Model (PSM) using a DC bus that connects in a one way approach, the common generators to the end-users. The article investigates on the different suggested configurations of the PSM, with the converter characteristics and controls. A simplified case study is analyzed to test the performance of the sharing model and the stability of the control in different scenarios. The article compares the PSM based on a LVDC grid with existing approaches of virtual aggregations, and it highlights the main differences between the currently existing methods and our new LVDC microgrid approach. The suggested PSM appears more efficient, convenient and flexible than the existing virtual models, because users physically self-consume and share the energy locally generated.File | Dimensione | Formato | |
---|---|---|---|
11311-1248762 Faranda.pdf
Open Access dal 09/05/2024
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
918.91 kB
Formato
Adobe PDF
|
918.91 kB | Adobe PDF | Visualizza/Apri |
2023_IEEE+Industrial+Applications_A+New+Proposal+for+Power+Sharing+in+LVDC+Energy+Community+Microgrids_final.pdf
Accesso riservato
:
Publisher’s version
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.