Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently transform optically encoded inputs using Mach-Zehnder interferometer mesh networks interleaved with nonlinearities. We experimentally trained a three-layer, four-port silicon photonic neural network with programmable phase shifters and optical power monitoring to solve classification tasks using "in situ backpropagation," a photonic analog of the most popular method to train conventional neural networks. We measured backpropagated gradients for phase-shifter voltages by interfering forward-and backward -propagating light and simulated in situ backpropagation for 64-port photonic neural networks trained on MNIST image recognition given errors. All experiments performed comparably to digital simulations (>94% test accuracy), and energy scaling analysis indicated a route to scalable machine learning.
Experimentally realized in situ backpropagation for deep learning in photonic neural networks
Milanizadeh, Maziyar;Morichetti, Francesco;Melloni, Andrea;
2023-01-01
Abstract
Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently transform optically encoded inputs using Mach-Zehnder interferometer mesh networks interleaved with nonlinearities. We experimentally trained a three-layer, four-port silicon photonic neural network with programmable phase shifters and optical power monitoring to solve classification tasks using "in situ backpropagation," a photonic analog of the most popular method to train conventional neural networks. We measured backpropagated gradients for phase-shifter voltages by interfering forward-and backward -propagating light and simulated in situ backpropagation for 64-port photonic neural networks trained on MNIST image recognition given errors. All experiments performed comparably to digital simulations (>94% test accuracy), and energy scaling analysis indicated a route to scalable machine learning.File | Dimensione | Formato | |
---|---|---|---|
InSituBackpropagationScienceSubmission_Round2_030222.pdf
Open Access dal 02/11/2023
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
5.77 MB
Formato
Adobe PDF
|
5.77 MB | Adobe PDF | Visualizza/Apri |
Experimentally realized in situ backpropagation for deep learning in photonic neural networks.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.