To limit the climate change, a strong evolution on stationary renewable power production and transport sector is needed. More than 34 million of Battery Electric Vehicles (BEVs) and 13 million of Plug-in Electric Vehicles (PHEV) are expected to circulate in Europe by 2030. This negatively affects distribution lines during BEV/PHEV charge, especially in densely populated areas. A possible solution to enhance BEV/PHEV penetration without impact on grid stability is represented by Micro-Grids (MGs), including renewable production, local loads, and energy storage. In this work, a residential MG composed by a Photovoltaic (PV) power generation system, a local load including BEV/PHEV charge, and a Li-ion battery energy storage system is implemented to assess and compare the impact on grid energy independence introducing BEV and PHEV charging load. Four different scenarios are simulated, considering either BEV or PHEV charge, varying the installed PV power (i.e., 3 kWp and 6 kWp) and Li-ion battery nominal capacity (10–20 kWh). The results demonstrate that, in a MG integrating 6 kWp PV and 20 kWh battery, BEV and PHEV can be daily charged by PV energy for 23% and 68% respectively. Hence, enhancing PV installed power and energy storage capacity in the future residential MGs will be needed to avoid stability issues on distribution feeders, in the view of massive BEV penetration for pursuing the limit to global warming.

Assessment Analysis of BEV/PHEV Recharge in a Residential Micro-Grid Based on Renewable Generation

Longo M.;Zaninelli D.
2023-01-01

Abstract

To limit the climate change, a strong evolution on stationary renewable power production and transport sector is needed. More than 34 million of Battery Electric Vehicles (BEVs) and 13 million of Plug-in Electric Vehicles (PHEV) are expected to circulate in Europe by 2030. This negatively affects distribution lines during BEV/PHEV charge, especially in densely populated areas. A possible solution to enhance BEV/PHEV penetration without impact on grid stability is represented by Micro-Grids (MGs), including renewable production, local loads, and energy storage. In this work, a residential MG composed by a Photovoltaic (PV) power generation system, a local load including BEV/PHEV charge, and a Li-ion battery energy storage system is implemented to assess and compare the impact on grid energy independence introducing BEV and PHEV charging load. Four different scenarios are simulated, considering either BEV or PHEV charge, varying the installed PV power (i.e., 3 kWp and 6 kWp) and Li-ion battery nominal capacity (10–20 kWh). The results demonstrate that, in a MG integrating 6 kWp PV and 20 kWh battery, BEV and PHEV can be daily charged by PV energy for 23% and 68% respectively. Hence, enhancing PV installed power and energy storage capacity in the future residential MGs will be needed to avoid stability issues on distribution feeders, in the view of massive BEV penetration for pursuing the limit to global warming.
2023
Smart Innovation, Systems and Technologies
978-981-19-8768-7
978-981-19-8769-4
Battery
BEV
Dynamic modeling
Energy storage
Micro-Grid
PHEV
Renewable energy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1248742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact