Nowadays, nations are moving toward the electrification of the transportation section, and the widespread development of EV charging stations and their infrastructures supplied by the grid would strain the power grid and lead to overload issues in the network. To address this challenge, this paper presents a method for utilizing the braking energy of trains in railway stations to charge EVs located in strategic areas like park-and-ride regions close to railway stations improving energy efficiency and preventing grid overload. To validate the feasibility of the proposed system, a metro substation in Milan city is considered as a case study located in outskirts of the city and contains large number of parking space for vehicles. Three different scenarios are evaluated including DC fast charging station, AC low charging station and collaborative hybrid energy storage based AC charging station as EV charging station type. The results are studied for different EV population number, charging rate and the contractual power grid. Meanwhile, the possibility of proposed system in participating as V2G technology and taking advantage of the EV’s batteries to provide ancillary support to accelerating trains is investigated regarding peak shaving objective. The results indicated that the suggested interconnected system operates effectively when a significant quantity of EVs are parked at the station. However, the results revealed that the performance of the proposed system is notably influenced by other factors and a limited number of EVs during the early morning and late evening periods. Overall, this study confirms the feasibility of energy transfer between two types of transportation means in intermodal areas.

Hybrid Energy Storage System Taking Advantage of Electric Vehicle Batteries for Recovering Regenerative Braking Energy in Railway Station

Jafari Kaleybar H.;Golnargesi M.;Brenna M.;Zaninelli D.
2023-01-01

Abstract

Nowadays, nations are moving toward the electrification of the transportation section, and the widespread development of EV charging stations and their infrastructures supplied by the grid would strain the power grid and lead to overload issues in the network. To address this challenge, this paper presents a method for utilizing the braking energy of trains in railway stations to charge EVs located in strategic areas like park-and-ride regions close to railway stations improving energy efficiency and preventing grid overload. To validate the feasibility of the proposed system, a metro substation in Milan city is considered as a case study located in outskirts of the city and contains large number of parking space for vehicles. Three different scenarios are evaluated including DC fast charging station, AC low charging station and collaborative hybrid energy storage based AC charging station as EV charging station type. The results are studied for different EV population number, charging rate and the contractual power grid. Meanwhile, the possibility of proposed system in participating as V2G technology and taking advantage of the EV’s batteries to provide ancillary support to accelerating trains is investigated regarding peak shaving objective. The results indicated that the suggested interconnected system operates effectively when a significant quantity of EVs are parked at the station. However, the results revealed that the performance of the proposed system is notably influenced by other factors and a limited number of EVs during the early morning and late evening periods. Overall, this study confirms the feasibility of energy transfer between two types of transportation means in intermodal areas.
2023
charging station
electric railway
electric vehicle
hybrid energy storage system
regenerative braking energy
traction substation
File in questo prodotto:
File Dimensione Formato  
energies-16-05117.pdf

accesso aperto

Dimensione 4.72 MB
Formato Adobe PDF
4.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1248721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact