Towards revealing the potential of satellite Synthetic Aperture Radar (SAR) Interferometry (InSAR) for efficient detection and monitoring of Cultural Heritage (CH) encouraging resilient built CH, this study is devoted to the validation of InSAR-derived vertical displacements with a full-resolution perspective taking advantage of high-precision geodetic levelling measurements. Considering the Cathedral of Como, northern Italy, as the case study, two different Persistent Scatterer Interferometry (PSI) techniques have been applied to Cosmo-SkyMed high-resolution SAR images acquired in both ascending and descending orbit tacks within the time interval of 2010–2012. Besides using the simplified approach for obtaining the vertical displacement velocity from Line of Sight (LOS) velocity, a weighted, localized, multi-track Vertical Displacement Extraction (VDE) approach is proposed and evaluated, which uses the technical outcome of Differential InSAR (DInSAR) and spatial information. The results, using a proper PSI technique, showed that the accuracy level of extracted vertical displacement velocities in a full-resolution application is ca. 0.6 [mm/year] with a dense concentration of InSAR-Levelling absolute errors lower than 0.3 [mm/year] which are reliable and reasonable levels based on the employed validation framework in this study. Also, the weighted localized VDE can significantly decrease the InSAR-Levelling errors, adding to the reliability of the InSAR application for CH monitoring and condition assessment in practice.

VALIDATION OF FULL-RESOLUTION DINSAR-DERIVED VERTICAL DISPLACEMENT IN CULTURAL HERITAGE MONITORING: INTEGRATION WITH GEODETIC LEVELLING MEASUREMENTS

Eskandari, R.;Scaioni, M.
2023-01-01

Abstract

Towards revealing the potential of satellite Synthetic Aperture Radar (SAR) Interferometry (InSAR) for efficient detection and monitoring of Cultural Heritage (CH) encouraging resilient built CH, this study is devoted to the validation of InSAR-derived vertical displacements with a full-resolution perspective taking advantage of high-precision geodetic levelling measurements. Considering the Cathedral of Como, northern Italy, as the case study, two different Persistent Scatterer Interferometry (PSI) techniques have been applied to Cosmo-SkyMed high-resolution SAR images acquired in both ascending and descending orbit tacks within the time interval of 2010–2012. Besides using the simplified approach for obtaining the vertical displacement velocity from Line of Sight (LOS) velocity, a weighted, localized, multi-track Vertical Displacement Extraction (VDE) approach is proposed and evaluated, which uses the technical outcome of Differential InSAR (DInSAR) and spatial information. The results, using a proper PSI technique, showed that the accuracy level of extracted vertical displacement velocities in a full-resolution application is ca. 0.6 [mm/year] with a dense concentration of InSAR-Levelling absolute errors lower than 0.3 [mm/year] which are reliable and reasonable levels based on the employed validation framework in this study. Also, the weighted localized VDE can significantly decrease the InSAR-Levelling errors, adding to the reliability of the InSAR application for CH monitoring and condition assessment in practice.
2023
29th CIPA Symposium: Documenting, Understanding, Preserving Cultural Heritage. Humanities and Digital Technologies for Shaping the Future
Synthetic Aperture Radar
Full-Resolution DInSAR
Weighted Localized Vertical Displacement Extraction
Geodetic Levelling Measurements
Cultural Heritage
File in questo prodotto:
File Dimensione Formato  
isprs-annals-X-M-1-2023-79-2023.pdf

accesso aperto

: Publisher’s version
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1246460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact