This paper presents an extensive evaluation of the Deep Image Prior (DIP) technique for image inpainting on Synthetic Aperture Radar (SAR) images. SAR images are gaining popularity in various applications, but there may be a need to conceal certain regions of them. Image inpainting provides a solution for this. However, not all inpainting techniques are designed to work on SAR images. Some are intended for use on photographs, while others have to be specifically trained on top of a huge set of images. In this work, we evaluate the performance of the DIP technique that is capable of addressing these challenges: it can adapt to the image under analysis including SAR imagery; it does not require any training. Our results demonstrate that the DIP method achieves great performance in terms of objective and semantic metrics. This indicates that the DIP method is a promising approach for inpainting SAR images, and can provide high-quality results that meet the requirements of various applications.

Deep Image Prior Amplitude SAR Image Anonymization

Cannas, Edoardo Daniele;Mandelli, Sara;Bestagini, Paolo;Tubaro, Stefano;
2023-01-01

Abstract

This paper presents an extensive evaluation of the Deep Image Prior (DIP) technique for image inpainting on Synthetic Aperture Radar (SAR) images. SAR images are gaining popularity in various applications, but there may be a need to conceal certain regions of them. Image inpainting provides a solution for this. However, not all inpainting techniques are designed to work on SAR images. Some are intended for use on photographs, while others have to be specifically trained on top of a huge set of images. In this work, we evaluate the performance of the DIP technique that is capable of addressing these challenges: it can adapt to the image under analysis including SAR imagery; it does not require any training. Our results demonstrate that the DIP method achieves great performance in terms of objective and semantic metrics. This indicates that the DIP method is a promising approach for inpainting SAR images, and can provide high-quality results that meet the requirements of various applications.
2023
SAR; anonymization; deep image prior; inpainting
File in questo prodotto:
File Dimensione Formato  
remotesensing-2455117-proof-read.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 19.51 MB
Formato Adobe PDF
19.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1246417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact