Hybrid rocket engines (HREs) offer a low-cost, reliable, and environmentally friendly solution for both launch and in-space applications. Hybrid propellants have been identified as green thanks to their use of non-toxic, non-carcinogenic oxidizers. Of particular relevance are storable oxidizers, namely high-concentration (≥90 wt.%) hydrogen peroxide (HP, H2O2) and nitrous oxide (N2O). This work provides a survey of experimental activities based on H2O2 and N2O for hybrid rocket propulsion applications. Open literature data are completed with original thermochemical calculations to support the discussion.
Test Activities on Hybrid Rocket Engines: Combustion Analyses and Green Storable Oxidizers - A Short Review
Paravan, Christian;
2023-01-01
Abstract
Hybrid rocket engines (HREs) offer a low-cost, reliable, and environmentally friendly solution for both launch and in-space applications. Hybrid propellants have been identified as green thanks to their use of non-toxic, non-carcinogenic oxidizers. Of particular relevance are storable oxidizers, namely high-concentration (≥90 wt.%) hydrogen peroxide (HP, H2O2) and nitrous oxide (N2O). This work provides a survey of experimental activities based on H2O2 and N2O for hybrid rocket propulsion applications. Open literature data are completed with original thermochemical calculations to support the discussion.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PARAC02-23.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.