It is widely acknowledged that coastal cities will be heavily threatened by climate change globally. Among these cities, the Mediterranean suffers from a coupled dynamic of sea level rise and pluvial flooding due to their landform and soil characteristics. In this situation, analyzing the morphological and hydrological characteristics to define vulnerable areas is a prerequisite to designing performance-based solutions. But how does the flood vulnerability change with the different configurations of pervious and impervious surfaces? How do soil and landform characteristics affect flood vulnerability? This study assumes the possibility of re-naturing the coastal neighborhood of Karsiyaka, Izmir (Türkiye) while using fifteen alternative scenarios. We modeled the Urban Flood Risk Mitigation using InVEST (Natural Capital Project) and integrated the results with an analysis of the flow accumulation. According to our results, when the de-sealing process occurs in soils with low hydraulic conductibility, the results in terms of run-off containment can be dramatically limited or non-perceptible. The findings demonstrate that modeling with scenarios can guide the decision-makers while understanding exactly where the de-permeabilization can achieve its maximum efficiency. Therefore, performance-based solutions designed to increase water infiltration should carefully consider ex-ante empirical modeling to prevent urban flooding.

Preventing Urban Floods by Optimized Modeling: A Comparative Evaluation of Alternatives in Izmir (Türkiye)

Stefano Salata
2023-01-01

Abstract

It is widely acknowledged that coastal cities will be heavily threatened by climate change globally. Among these cities, the Mediterranean suffers from a coupled dynamic of sea level rise and pluvial flooding due to their landform and soil characteristics. In this situation, analyzing the morphological and hydrological characteristics to define vulnerable areas is a prerequisite to designing performance-based solutions. But how does the flood vulnerability change with the different configurations of pervious and impervious surfaces? How do soil and landform characteristics affect flood vulnerability? This study assumes the possibility of re-naturing the coastal neighborhood of Karsiyaka, Izmir (Türkiye) while using fifteen alternative scenarios. We modeled the Urban Flood Risk Mitigation using InVEST (Natural Capital Project) and integrated the results with an analysis of the flow accumulation. According to our results, when the de-sealing process occurs in soils with low hydraulic conductibility, the results in terms of run-off containment can be dramatically limited or non-perceptible. The findings demonstrate that modeling with scenarios can guide the decision-makers while understanding exactly where the de-permeabilization can achieve its maximum efficiency. Therefore, performance-based solutions designed to increase water infiltration should carefully consider ex-ante empirical modeling to prevent urban flooding.
2023
Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science
978-3-031-37110-3
Urban Flood Management
Soil Permeability
Performance-Based Urban Planning
Ecosystem Services Modeling
File in questo prodotto:
File Dimensione Formato  
978-3-031-37111-0_42.pdf

Accesso riservato

Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1243279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact