Carbon Capture and Storage (CCS) using chemical absorption is a viable method to significantly cut CO2 emissions in the industrial and energy sectors. However, further development of improved absorbents is necessary to reduce the costs and environmental impact of current CCS technologies. To design the process and quantify energy consumption and costs through process simulation, it is necessary to implement an accurate and robust thermodynamic model. This article describes in details how to develop, regress, and validate a VLE model using ELECNRTL model in Aspen Plus V11 for the novel HS3 solvent, a blend of 3-amino-1-propanol and 1-(2hydroxyethyl) pyrrolidine, which is currently being characterized in Realise (H2020-funded project). The VLE model is validated over a wide range of temperatures and loadings. Deviations on CO2 partial pressures and heat of absorption are lower than 15% and 8%, respectively. The proposed procedure to regress ELECNRTL parameters can be used as a general guideline for implementing VLE models in Aspen Plus for generic amine blends or electrolyte solutions.

An approach for VLE model development, validation, and implementation in Aspen Plus for amine blends in CO2 capture: the HS3 solvent case study

Gilardi, Matteo;Bonalumi, Davide
2023-01-01

Abstract

Carbon Capture and Storage (CCS) using chemical absorption is a viable method to significantly cut CO2 emissions in the industrial and energy sectors. However, further development of improved absorbents is necessary to reduce the costs and environmental impact of current CCS technologies. To design the process and quantify energy consumption and costs through process simulation, it is necessary to implement an accurate and robust thermodynamic model. This article describes in details how to develop, regress, and validate a VLE model using ELECNRTL model in Aspen Plus V11 for the novel HS3 solvent, a blend of 3-amino-1-propanol and 1-(2hydroxyethyl) pyrrolidine, which is currently being characterized in Realise (H2020-funded project). The VLE model is validated over a wide range of temperatures and loadings. Deviations on CO2 partial pressures and heat of absorption are lower than 15% and 8%, respectively. The proposed procedure to regress ELECNRTL parameters can be used as a general guideline for implementing VLE models in Aspen Plus for generic amine blends or electrolyte solutions.
File in questo prodotto:
File Dimensione Formato  
Gilardi_Bonalumi_HS3-Realise-2023.pdf

Accesso riservato

Descrizione: As published
: Publisher’s version
Dimensione 3.59 MB
Formato Adobe PDF
3.59 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1239758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact