Electrified methane steam reforming (eMSR) is a promising concept for low-carbon hydrogen production. We investigate an innovative eMSR reactor where SiSiC foams, coated with Rh/Al2O3 catalyst, act as electrical resistances to generate the reaction heat via the Joule effect. The novel system was studied at different temperatures, space velocities, operating pressures and catalyst loadings. Thanks to efficient heating, active catalyst and optimal substrate geometry, complete methane conversions were observed even at a high space velocity of 200000 Nl/h/kgcat. A specific energy demand as low as 1.24 kWh/Nm3H2, with an unprecedented energy efficiency of 81%, was achieved on a washcoated foam with catalyst density of 86.3 g/L (GHSV = 150000 Nl/h/kgcat, S/C = 4.1, ambient pressure). A mathematical model was validated against measured performance indicators and used to design an intensified eMSR unit for small scale H2 production.(c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Direct electrification of Rh/Al2O3 washcoated SiSiC foams for methane steam reforming: An experimental and modelling study

Zheng, L;Ambrosetti, M;Zaio, F;Beretta, A;Groppi, G;Tronconi, E
2023-01-01

Abstract

Electrified methane steam reforming (eMSR) is a promising concept for low-carbon hydrogen production. We investigate an innovative eMSR reactor where SiSiC foams, coated with Rh/Al2O3 catalyst, act as electrical resistances to generate the reaction heat via the Joule effect. The novel system was studied at different temperatures, space velocities, operating pressures and catalyst loadings. Thanks to efficient heating, active catalyst and optimal substrate geometry, complete methane conversions were observed even at a high space velocity of 200000 Nl/h/kgcat. A specific energy demand as low as 1.24 kWh/Nm3H2, with an unprecedented energy efficiency of 81%, was achieved on a washcoated foam with catalyst density of 86.3 g/L (GHSV = 150000 Nl/h/kgcat, S/C = 4.1, ambient pressure). A mathematical model was validated against measured performance indicators and used to design an intensified eMSR unit for small scale H2 production.(c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
2023
Electrified methane steam
reforming
Hydrogen production
Decarbonization
Structured catalysts
Process intensification
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360319922062346-main.pdf

accesso aperto

: Publisher’s version
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1238698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact