Modeling ecosystem services is a growing trend in scientific research, and Nature-based Solutions (NbSs) are increasingly used by land-use planners and environmental designers to achieve improved adaptation to climate change and mitigation of the negative effects of climate change. Predictions of ecological benefits of NbSs are needed early in design to support decision making. In this study, we used ecological analysis to predict the benefits of two NbSs applied to a university masterplan and adjusted our preliminary design strategy according to the first modeling results. Our Area of Interest was the IZTECH campus, which is located in a rural area of the eastern Mediterranean region (Izmir/Turkey). A primary design goal was to improve habitat quality by revitalizing soil. Customized analysis of the Baseline Condition and two NbSs scenarios was achieved by using local values obtained from a high-resolution photogrammetric scan of the catchment to produce flow accumulation and habitat quality indexes. Results indicate that anthropogenic features are the primary cause of habitat decay and that decreasing imperviousness reduces habitat decay significantly more than adding vegetation. This study creates a method of supporting sustainability goals by quickly testing alternative NbSs. The main innovation is demonstrating that early approximation of the ecological benefits of NbSs can inform preliminary design strategy. The proposed model may be calibrated to address specific environmental challenges of a given location and test other forms of NbSs.

De-Sealing Reverses Habitat Decay More Than Increasing Groundcover Vegetation

Stefano Salata;
2023-01-01

Abstract

Modeling ecosystem services is a growing trend in scientific research, and Nature-based Solutions (NbSs) are increasingly used by land-use planners and environmental designers to achieve improved adaptation to climate change and mitigation of the negative effects of climate change. Predictions of ecological benefits of NbSs are needed early in design to support decision making. In this study, we used ecological analysis to predict the benefits of two NbSs applied to a university masterplan and adjusted our preliminary design strategy according to the first modeling results. Our Area of Interest was the IZTECH campus, which is located in a rural area of the eastern Mediterranean region (Izmir/Turkey). A primary design goal was to improve habitat quality by revitalizing soil. Customized analysis of the Baseline Condition and two NbSs scenarios was achieved by using local values obtained from a high-resolution photogrammetric scan of the catchment to produce flow accumulation and habitat quality indexes. Results indicate that anthropogenic features are the primary cause of habitat decay and that decreasing imperviousness reduces habitat decay significantly more than adding vegetation. This study creates a method of supporting sustainability goals by quickly testing alternative NbSs. The main innovation is demonstrating that early approximation of the ecological benefits of NbSs can inform preliminary design strategy. The proposed model may be calibrated to address specific environmental challenges of a given location and test other forms of NbSs.
2023
sustainability; predictive modeling; nature-based solutions; GIS-based ecological analysis; habitat quality; habitat decay; anthropogenic footprint; de-sealing
File in questo prodotto:
File Dimensione Formato  
climate-11-00116.pdf

Accesso riservato

: Publisher’s version
Dimensione 26.8 MB
Formato Adobe PDF
26.8 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1238517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact