New paradigms based on Circular Economy (CE) principles are needed for boosting the ecological transition and improving the energy and material efficiency. In this paper, a novel remanufacturing process chain for End-of-Life (EoL) automotive panels is first presented. The core of the recycling strategy is the reshaping of curved EoL automotive sheets through flattening by means of a hydraulic press. Flattening experiments together with press power consumption measurements have been performed on thin steel parts. While the experimental procedure demonstrated the technical feasibility of flattening “small-scale” steel parts, a more complete analysis on environmental sustainability was required. For this purpose, a Life Cycle Assessment (LCA) of the remanufacturing process chain proposed was set up. The results of the study demonstrated that flattening is a viable solution for reshaping EoL automotive panels, and that, for one kg of reshaped steel, approximately 2.2 kg CO2 and 24 MJ could be saved.

Energy measurements and LCA of remanufactured automotive steel sheets

FARIOLI Daniele;FABRIZIO Matteo;KAYA Ertugrul;MUSSI Valerio;STRANO Matteo
2023-01-01

Abstract

New paradigms based on Circular Economy (CE) principles are needed for boosting the ecological transition and improving the energy and material efficiency. In this paper, a novel remanufacturing process chain for End-of-Life (EoL) automotive panels is first presented. The core of the recycling strategy is the reshaping of curved EoL automotive sheets through flattening by means of a hydraulic press. Flattening experiments together with press power consumption measurements have been performed on thin steel parts. While the experimental procedure demonstrated the technical feasibility of flattening “small-scale” steel parts, a more complete analysis on environmental sustainability was required. For this purpose, a Life Cycle Assessment (LCA) of the remanufacturing process chain proposed was set up. The results of the study demonstrated that flattening is a viable solution for reshaping EoL automotive panels, and that, for one kg of reshaped steel, approximately 2.2 kg CO2 and 24 MJ could be saved.
2023
Proceedings of ESAFORM2023
9781644902479
Sheet Metal Remanufacturing, Energy Analysis, Circular Economy, LCA Sustainability
File in questo prodotto:
File Dimensione Formato  
Energy measurements and LCA of remanufactured automotive steel sheets.pdf

accesso aperto

: Publisher’s version
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1238347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact