Gaussian mixture models provide a probabilistically sound clustering approach. However, their tendency to be over-parameterized endangers their utility in high dimensions. To induce sparsity, penalized model-based clustering strategies have been explored. Some of these approaches, exploiting the link between Gaussian graphical models and mixtures, allow to handle large precision matrices, encoding variables relationships. By assuming similar components sparsity levels, these methods fall short when the dependence structures are group-dependent. Our proposal, by penalizing group-specific transformations of the precision matrices, automatically handles situations where under or over-connectivity between variables is witnessed. The performances of the method are shown via a real data experiment

Group-wise penalized estimation schemes in model-based clustering

A. Cappozzo;
2022-01-01

Abstract

Gaussian mixture models provide a probabilistically sound clustering approach. However, their tendency to be over-parameterized endangers their utility in high dimensions. To induce sparsity, penalized model-based clustering strategies have been explored. Some of these approaches, exploiting the link between Gaussian graphical models and mixtures, allow to handle large precision matrices, encoding variables relationships. By assuming similar components sparsity levels, these methods fall short when the dependence structures are group-dependent. Our proposal, by penalizing group-specific transformations of the precision matrices, automatically handles situations where under or over-connectivity between variables is witnessed. The performances of the method are shown via a real data experiment
2022
SIS 2022 | Book of Short Papers
9788891932310
Model-based clustering, Graphical lasso, EM algorithm, Gaussian graphical models
File in questo prodotto:
File Dimensione Formato  
Casa_SIS2022.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 128.12 kB
Formato Adobe PDF
128.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1237408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact