Iron chelators, such as deferoxamine, exert an anticancer effect by altering the activity of biomolecules critical for regulation of the cell cycle, cell metabolism, and apoptotic processes. Thus, iron chelators are sometimes used in combination with radio- and/or chemotherapy in the treatment of cancer. The possibility that deferoxamine could induce a program of senescence similar to radio- and/or chemotherapy, fostering adaptation in the treatment of cancer cells, is not fully understood. Using established biochemical techniques, biomarkers linked to lipid composition, and coherent anti-Stokes Raman scattering microscopy, we demonstrated that hepatocellular carcinoma-derived HepG2 cells survive after deferoxamine treatment, acquiring phenotypic traits and representative hallmarks of senescent cells. The results support the view that deferoxamine acts in HepG2 cells to produce oxidative stress-induced senescence by triggering sequential mitochondrial and lysosomal dysfunction accompanied by autophagy blockade. We also focused on the lipidome of senescent cells after deferoxamine treatment. Using mass spectrometry, we found that the deferoxamine-induced senescent cells presented marked remodeling of the phosphoinositol, sulfatide, and cardiolipin profiles, which all play a central role in cell signaling cascades, intracellular membrane trafficking, and mitochondria functions. Detection of alterations in glycosphingolipid sulfate species suggested modifications in ceramide generation, and turnover is frequently described in cancer cell survival and resistance to chemotherapy. Blockade of ceramide generation may explain autophagic default, resistance to apoptosis, and the onset of senescence.

Reduced sulfatide content in deferoxamine-induced senescent HepG2 cells

Bresci, Arianna;Manetti, Francesco;Polli, Dario;
2023-01-01

Abstract

Iron chelators, such as deferoxamine, exert an anticancer effect by altering the activity of biomolecules critical for regulation of the cell cycle, cell metabolism, and apoptotic processes. Thus, iron chelators are sometimes used in combination with radio- and/or chemotherapy in the treatment of cancer. The possibility that deferoxamine could induce a program of senescence similar to radio- and/or chemotherapy, fostering adaptation in the treatment of cancer cells, is not fully understood. Using established biochemical techniques, biomarkers linked to lipid composition, and coherent anti-Stokes Raman scattering microscopy, we demonstrated that hepatocellular carcinoma-derived HepG2 cells survive after deferoxamine treatment, acquiring phenotypic traits and representative hallmarks of senescent cells. The results support the view that deferoxamine acts in HepG2 cells to produce oxidative stress-induced senescence by triggering sequential mitochondrial and lysosomal dysfunction accompanied by autophagy blockade. We also focused on the lipidome of senescent cells after deferoxamine treatment. Using mass spectrometry, we found that the deferoxamine-induced senescent cells presented marked remodeling of the phosphoinositol, sulfatide, and cardiolipin profiles, which all play a central role in cell signaling cascades, intracellular membrane trafficking, and mitochondria functions. Detection of alterations in glycosphingolipid sulfate species suggested modifications in ceramide generation, and turnover is frequently described in cancer cell survival and resistance to chemotherapy. Blockade of ceramide generation may explain autophagic default, resistance to apoptosis, and the onset of senescence.
2023
CARS
Cancer cell senescence
Cardiolipin
Deferoxamine
HepG2
Lipidomics
MALDI
Mass spectrometry
Phosphoinositol
Sulfatide
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1357272523000584-main.pdf

accesso aperto

Descrizione: PDF dalla rivista
: Publisher’s version
Dimensione 8.16 MB
Formato Adobe PDF
8.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1236931
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact