Given a positive operator $A$ on some Hilbert space, and a nonnegative decreasing summable function $\mu$, we consider the abstract equation with memory $$ \ddot u(t)+ A u(t)- \int_0^t \mu(s)Au(t-s) ds=0 $$ modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provide numerical evidence of the fact that the energy $$\E(t)=\Big(1-\int_0^t\mu(s)ds\Big)\|u(t)\|^2_1+\|\dot u(t)\|^2 +\int_0^t\mu(s)\|u(t)-u(t-s)\|^2_1ds,$$ of any nontrivial solution cannot decay faster than exponential, no matter how fast might be the decay of the memory kernel $\mu$. This will be accomplished by simulating the integro-differential equation for different choices of the memory kernel $\mu$ and of the initial data.

Lack of superstable trajectories in linear viscoelasticity: a numerical approach

Antonietti, Paola F.;Liverani, Lorenzo;Pata, Vittorino
2023-01-01

Abstract

Given a positive operator $A$ on some Hilbert space, and a nonnegative decreasing summable function $\mu$, we consider the abstract equation with memory $$ \ddot u(t)+ A u(t)- \int_0^t \mu(s)Au(t-s) ds=0 $$ modeling the dynamics of linearly viscoelastic solids. The purpose of this work is to provide numerical evidence of the fact that the energy $$\E(t)=\Big(1-\int_0^t\mu(s)ds\Big)\|u(t)\|^2_1+\|\dot u(t)\|^2 +\int_0^t\mu(s)\|u(t)-u(t-s)\|^2_1ds,$$ of any nontrivial solution cannot decay faster than exponential, no matter how fast might be the decay of the memory kernel $\mu$. This will be accomplished by simulating the integro-differential equation for different choices of the memory kernel $\mu$ and of the initial data.
2023
File in questo prodotto:
File Dimensione Formato  
77438e01-2b2b-4bad-a522-fa9feb1336a7.pdf

accesso aperto

: Publisher’s version
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1235746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact