A computational tool for non-ideal supersonic nozzle flows is developed to perform direct design of nozzle geometries and flow analysis of shock-free off-design conditions. So-called non-ideal flows are characterized by the departure of the fluid thermody-namics from the ideal-gas law, which is the case of supersonic expansions close to the critical point, either in the superheated vapour or in the supercritical region. Deviations from the ideal-gas model of remarkable significance are observed in connection with, but not limited to, fluids made of complex molecules. NIMOC (Non-Ideal Method Of Characteristics) implements a formulation of the Method Of Characteristics (MOC) valid for non-ideal flows: the classical formulation of the MOC is complemented with state-of-the-art nonlinear multiparameter Equations of State (EoS) implemented in external thermodynamic libraries. NIMOC implements a two-dimensional and axisymmetric formulation of the MOC, which is applied to the solution of the isentropic expansion through nozzles of different geometrical configurations: straight-axis symmetric and axisymmetric conventional wind-tunnel nozzles, straight-axis symmetric and axisym-metric minimum-length nozzles, and asymmetric nozzles with curved meanline. Results are presented, which demonstrate nozzle design and flow analysis in the presence of paradigmatic non-ideal flow phenomena. Verification of MOC computations is performed by means of inviscid Computational Fluid Dynamics (CFD) simulations and experimental data. Results are presented for selected geometrical configurations.

NIMOC: A design and analysis tool for supersonic nozzles under non-ideal compressible flow conditions

Gajoni P.;Guardone A.
2023-01-01

Abstract

A computational tool for non-ideal supersonic nozzle flows is developed to perform direct design of nozzle geometries and flow analysis of shock-free off-design conditions. So-called non-ideal flows are characterized by the departure of the fluid thermody-namics from the ideal-gas law, which is the case of supersonic expansions close to the critical point, either in the superheated vapour or in the supercritical region. Deviations from the ideal-gas model of remarkable significance are observed in connection with, but not limited to, fluids made of complex molecules. NIMOC (Non-Ideal Method Of Characteristics) implements a formulation of the Method Of Characteristics (MOC) valid for non-ideal flows: the classical formulation of the MOC is complemented with state-of-the-art nonlinear multiparameter Equations of State (EoS) implemented in external thermodynamic libraries. NIMOC implements a two-dimensional and axisymmetric formulation of the MOC, which is applied to the solution of the isentropic expansion through nozzles of different geometrical configurations: straight-axis symmetric and axisymmetric conventional wind-tunnel nozzles, straight-axis symmetric and axisym-metric minimum-length nozzles, and asymmetric nozzles with curved meanline. Results are presented, which demonstrate nozzle design and flow analysis in the presence of paradigmatic non-ideal flow phenomena. Verification of MOC computations is performed by means of inviscid Computational Fluid Dynamics (CFD) simulations and experimental data. Results are presented for selected geometrical configurations.
File in questo prodotto:
File Dimensione Formato  
ZOCCM01-23.pdf

accesso aperto

: Publisher’s version
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1235684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact