If only experimental measurements are available, direct data-driven control design becomes an appealing approach, as control performance is directly optimized based on the collected samples. The direct synthesis of a feedback controller from input-output data typically requires the blind choice of a reference model, that dictates the desired closed-loop behavior. In this paper, we propose a data-driven design scheme for linear parameter-varying (LPV) systems to account for soft performance specifications. Within this framework, the reference model is treated as an additional hyper-parameter to be learned from data, while the user is asked to provide only indicative performance constraints. The effectiveness of the proposed approach is demonstrated on a benchmark simulation case study, showing the improvement achieved by allowing for a flexible reference model. (C) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Direct data-driven design of LPV controllers with soft performance specifications
Breschi, V;Formentin, S
2022-01-01
Abstract
If only experimental measurements are available, direct data-driven control design becomes an appealing approach, as control performance is directly optimized based on the collected samples. The direct synthesis of a feedback controller from input-output data typically requires the blind choice of a reference model, that dictates the desired closed-loop behavior. In this paper, we propose a data-driven design scheme for linear parameter-varying (LPV) systems to account for soft performance specifications. Within this framework, the reference model is treated as an additional hyper-parameter to be learned from data, while the user is asked to provide only indicative performance constraints. The effectiveness of the proposed approach is demonstrated on a benchmark simulation case study, showing the improvement achieved by allowing for a flexible reference model. (C) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.