If only experimental measurements are available, direct data-driven control design becomes an appealing approach, as control performance is directly optimized based on the collected samples. The direct synthesis of a feedback controller from input-output data typically requires the blind choice of a reference model, that dictates the desired closed-loop behavior. In this paper, we propose a data-driven design scheme for linear parameter-varying (LPV) systems to account for soft performance specifications. Within this framework, the reference model is treated as an additional hyper-parameter to be learned from data, while the user is asked to provide only indicative performance constraints. The effectiveness of the proposed approach is demonstrated on a benchmark simulation case study, showing the improvement achieved by allowing for a flexible reference model. (C) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Direct data-driven design of LPV controllers with soft performance specifications

Breschi, V;Formentin, S
2022-01-01

Abstract

If only experimental measurements are available, direct data-driven control design becomes an appealing approach, as control performance is directly optimized based on the collected samples. The direct synthesis of a feedback controller from input-output data typically requires the blind choice of a reference model, that dictates the desired closed-loop behavior. In this paper, we propose a data-driven design scheme for linear parameter-varying (LPV) systems to account for soft performance specifications. Within this framework, the reference model is treated as an additional hyper-parameter to be learned from data, while the user is asked to provide only indicative performance constraints. The effectiveness of the proposed approach is demonstrated on a benchmark simulation case study, showing the improvement achieved by allowing for a flexible reference model. (C) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1235306
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact