Dual reflux pressure swing adsorption is a peculiar application of pressure swing adsorption with relevant separation potential. In a proper range of operating parameters, high separation performances are achieved in many applications, including complete separation in the case of binary mixtures. In this work, a new representation of the design parameters suitable for complete separation based on the semi-analytical solution of the corresponding Equilibrium Theory model is proposed for the four basic process configurations. Namely, given feed position, feed composition, and adsorbent separation selectivity, the combinations of the remaining process parameters ensuring complete separation are identified in a 3D plot. Furthermore, the same model equations have been solved numerically to explore conditions of incomplete separation, where the semi-analytical solution is not available. In particular, the sensitivity of the separation performances of each configuration to the pressure ratio has been explored. More specifically, given the region of operating conditions suitable for complete separation, selected operating conditions outside this region have been explored aimed to recover/improve the separation quality. Even though the different configurations exhibit different behaviors, the general dependence of the product purity upon the pressure ratio is quite limited and only minor improvements can be obtained with a few exceptions.

Effect of pressure ratio on the separation performances of different DRPSA configurations under equilibrium conditions

Ester Rossi;Federico Florit;Giuseppe Storti;Renato Rota
2022-01-01

Abstract

Dual reflux pressure swing adsorption is a peculiar application of pressure swing adsorption with relevant separation potential. In a proper range of operating parameters, high separation performances are achieved in many applications, including complete separation in the case of binary mixtures. In this work, a new representation of the design parameters suitable for complete separation based on the semi-analytical solution of the corresponding Equilibrium Theory model is proposed for the four basic process configurations. Namely, given feed position, feed composition, and adsorbent separation selectivity, the combinations of the remaining process parameters ensuring complete separation are identified in a 3D plot. Furthermore, the same model equations have been solved numerically to explore conditions of incomplete separation, where the semi-analytical solution is not available. In particular, the sensitivity of the separation performances of each configuration to the pressure ratio has been explored. More specifically, given the region of operating conditions suitable for complete separation, selected operating conditions outside this region have been explored aimed to recover/improve the separation quality. Even though the different configurations exhibit different behaviors, the general dependence of the product purity upon the pressure ratio is quite limited and only minor improvements can be obtained with a few exceptions.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1235048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact