This work presents a novel approach to address a challenging and still unsolved problem of neural network based load forecasting systems, that despite the significant results reached in terms of prediction error reduction, still lack suitable indications regarding sample-wise trustworthiness of their predictions. The present approach is framed on Bayesian Mixture Density Networks, enhancing the mapping capabilities of neural networks by integrated predictive distributions, and encompassing both aleatoric and epistemic uncertainty sources. An end-to-end training method is developed, aimed to discover the latent functional relation to conditioning variables, characterize the inherent load stochasticity, and convey parameters uncertainty in a unique framework. To achieve reliable and computationally scalable estimators, both Mean Field variational inference and deep ensembles are integrated. Experiments have been performed on short-term load forecasting tasks at both regional and fine-grained household scale, to investigate heterogeneous operating conditions. Different architectural configurations are compared, showing by Continuous Ranked Probability Score based tests that significant performance improvements are achieved by integrating flexible aleatoric uncertainty patterns and multi-modalities in the parameters posterior space.

Probabilistic electric load forecasting through Bayesian Mixture Density Networks

Brusaferri, A;Matteucci, M;
2022-01-01

Abstract

This work presents a novel approach to address a challenging and still unsolved problem of neural network based load forecasting systems, that despite the significant results reached in terms of prediction error reduction, still lack suitable indications regarding sample-wise trustworthiness of their predictions. The present approach is framed on Bayesian Mixture Density Networks, enhancing the mapping capabilities of neural networks by integrated predictive distributions, and encompassing both aleatoric and epistemic uncertainty sources. An end-to-end training method is developed, aimed to discover the latent functional relation to conditioning variables, characterize the inherent load stochasticity, and convey parameters uncertainty in a unique framework. To achieve reliable and computationally scalable estimators, both Mean Field variational inference and deep ensembles are integrated. Experiments have been performed on short-term load forecasting tasks at both regional and fine-grained household scale, to investigate heterogeneous operating conditions. Different architectural configurations are compared, showing by Continuous Ranked Probability Score based tests that significant performance improvements are achieved by integrating flexible aleatoric uncertainty patterns and multi-modalities in the parameters posterior space.
2022
Neural networks
Bayesian deep learning
Mixture density
Probabilistic forecasting
Electric load
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0306261921015907-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 7.41 MB
Formato Adobe PDF
7.41 MB Adobe PDF   Visualizza/Apri
11311-1234653_Matteucci.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1234653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 13
social impact