Cities are complex, dynamic and adaptive systems that are in continuous evolution. This trend is influenced by causal relationships that occur between the social, political, economic and environmental dimensions that are at the basis of the urban system. Starting from these circumstances, investigating and evaluating the city as a complex and adaptive system has become a fundamental issue in the context of urban transformation and regeneration operations. These are complex and dynamic processes both in temporal and spatial scale that are characterised by a multiplicity of variables, objectives and interests. For these characteristics, they represent particular decision problems described by an high level of uncertainty especially related to the appraisal of their possible future impacts on the social, economic and environmental dimensions. Currently, in the fields of urban studies a promising approach is represented by the Fuzzy Cognitive Maps (FCMs). The peculiarity of this technique is the ability both to describe and analyse the functioning of complex systems through a cognitive map and to simulate their possible evolution, starting from the current conditions. For this reason, the technique of FCMs has been applied to study and analyse complex systems, related to those domains characterised by a high level of uncertainty, such as cities and their transformation processes. This paper shows the application of an integrated evaluation approach based on the FCMs technique to two different urban regeneration processes. The article aims to underline both the strenghts of this technique, focusing on its ability to represent and manage the complexity of urban regeneration processes, and the critical aspects to identify the elements that to be developed in the future researches.
Le città sono sistemi complessi, dinamici e adattivi, in continua evoluzione. Il loro andamento è strettamente legato e influenzato dalle relazioni di tipo causa-effetto che intercorrono tra le loro diverse componenti sociali, politiche, economiche ed ambientali. Analizzare e valutare le città come sistemi complessi e adattivi diventa di fondamentale importanza nell’affrontare processi di trasformazione e rigenerazione urbana. Questi ultimi, infatti, si configurano, per loro natura, come dei processi complessi e multidimensionali, caratterizzati da una molteplicità di variabili, obiettivi e interessi e dinamici rispetto alla scala spaziale e temporale. La loro natura complessa e dinamica, li rende processi decisionali contraddistinti da un elevato livello di incertezza, soprattutto nell’ottica di prevedere i possibili impat- ti futuri che queste trasformazioni potrebbero avere sul- le componenti sociali, economiche ed ambientali. Un approccio particolarmente promettente nell’ambito dello studio dei sistemi urbani e delle loro trasformazioni è la tecnica delle Fuzzy Cognitive Maps (FCMs). La peculiarità di questa metodologia consiste nella loro capacità di descrivere e analizzare il funzionamento di sistemi complessi mediante una mappa cognitiva e di simulare la loro possibile evoluzione, a partire dalle con- dizioni iniziali. Per questa ragione le FCMs sono applicate ed utilizzate per lo studio e l’analisi dei sistemi com- plessi, riferiti a quei domini di conoscenza caratterizzati da un elevato livello di incertezza, come le città e le loro trasformazioni. Il presente contributo illustra l’applicazione di un approccio integrato basato sulla tecnica delle FCMs a due casi studio, riferiti a due diversi programmi di rigenerazione urbana. Obiettivo di queste applicazioni è mettere in luce le potenzialità di questo strumento nel rappresentare e gestire la complessità dei processi di rigenerazione urbana, ponendo particolare attenzione all’analisi dei comportamenti dinamici delle diverse alternative progettuali, al fine di ridurre l’incertezza rispetto agli impatti futuri, e al tempo stesso evidenziare le criticità della metodologia per identificare gli aspetti da sviluppare nelle ricerche future.
Fuzzy cognitive maps: A dynamic approach for urban regeneration processes evaluation
Marta Bottero;Giulia Datola;
2019-01-01
Abstract
Cities are complex, dynamic and adaptive systems that are in continuous evolution. This trend is influenced by causal relationships that occur between the social, political, economic and environmental dimensions that are at the basis of the urban system. Starting from these circumstances, investigating and evaluating the city as a complex and adaptive system has become a fundamental issue in the context of urban transformation and regeneration operations. These are complex and dynamic processes both in temporal and spatial scale that are characterised by a multiplicity of variables, objectives and interests. For these characteristics, they represent particular decision problems described by an high level of uncertainty especially related to the appraisal of their possible future impacts on the social, economic and environmental dimensions. Currently, in the fields of urban studies a promising approach is represented by the Fuzzy Cognitive Maps (FCMs). The peculiarity of this technique is the ability both to describe and analyse the functioning of complex systems through a cognitive map and to simulate their possible evolution, starting from the current conditions. For this reason, the technique of FCMs has been applied to study and analyse complex systems, related to those domains characterised by a high level of uncertainty, such as cities and their transformation processes. This paper shows the application of an integrated evaluation approach based on the FCMs technique to two different urban regeneration processes. The article aims to underline both the strenghts of this technique, focusing on its ability to represent and manage the complexity of urban regeneration processes, and the critical aspects to identify the elements that to be developed in the future researches.File | Dimensione | Formato | |
---|---|---|---|
06_Fuzzy Cognitive Maps_Vev_2019_compressed.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.