The purpose of this work is to improve the modelling process for the application of permanent magnets in a frequency up-conversion (FuC) mechanism for piezoelectric energy harvesters. More specifically, the aim is to avoid the burdensome finite element analyses (FEA) in the framework of electromechanical devices design. The analytical calculations are compared with experimental tests conducted by an ad-hoc set up and with FEA. After investigations on the interaction, an application of FuC mechanism is proposed on a meso-scale case study in which a low frequency seismic mass (LFM) interacts non-linearly, due to magnetic field, with an high frequency piezoelectric vibration energy harvester (PVEH). Numerical simulations have been carried out in the time domain (step-by-step analysis) under a harmonic low-frequency input acceleration signal. The peculiar behavior, due to non-linear dynamics, is investigated in both the repulsive and the attractive configurations of the magnets. The results confirm the effectiveness of magnetic FuC and show that the repulsive case allows the device to recover a larger amount of energy than the attractive configuration.

Numerical and experimental evaluation of the magnetic interaction for frequency up-conversion in piezoelectric vibration energy harvesters

Rosso M.;Corigliano A.;Ardito R.
2022-01-01

Abstract

The purpose of this work is to improve the modelling process for the application of permanent magnets in a frequency up-conversion (FuC) mechanism for piezoelectric energy harvesters. More specifically, the aim is to avoid the burdensome finite element analyses (FEA) in the framework of electromechanical devices design. The analytical calculations are compared with experimental tests conducted by an ad-hoc set up and with FEA. After investigations on the interaction, an application of FuC mechanism is proposed on a meso-scale case study in which a low frequency seismic mass (LFM) interacts non-linearly, due to magnetic field, with an high frequency piezoelectric vibration energy harvester (PVEH). Numerical simulations have been carried out in the time domain (step-by-step analysis) under a harmonic low-frequency input acceleration signal. The peculiar behavior, due to non-linear dynamics, is investigated in both the repulsive and the attractive configurations of the magnets. The results confirm the effectiveness of magnetic FuC and show that the repulsive case allows the device to recover a larger amount of energy than the attractive configuration.
2022
Magnetic frequency up-conversion
Piezoelectric energy harvesting
Multiphysics modelling
Non-linear dynamics
MEMS
File in questo prodotto:
File Dimensione Formato  
s11012-022-01481-0 (2).pdf

accesso aperto

: Publisher’s version
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1234265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 5
social impact