Understanding transient dynamics of the autonomic nervous system during fear learning remains a critical step to translate basic research into treatment of fear-related disorders. In humans, it has been demonstrated that fear learning typically elicits transient heart rate deceleration. However, classical analyses of heart rate variability (HRV) fail to disentangle the contribution of parasympathetic and sympathetic systems, and crucially, they are not able to capture phasic changes during fear learning. Here, to gain deeper insight into the physiological underpinnings of fear learning, a novel frequency-domain analysis of heart rate was performed using a short-time Fourier transform, and instantaneous spectral estimates extracted from a point-process modeling algorithm. We tested whether spectral transient components of HRV, used as a noninvasive probe of sympathetic and parasympathetic mechanisms, can dissociate between fear conditioned and neutral stimuli. We found that learned fear elicited a transient heart rate deceleration in anticipation of noxious stimuli. Crucially, results revealed a significant increase in spectral power in the high frequency band when facing the conditioned stimulus, indicating increased parasympathetic (vagal) activity, which distinguished conditioned and neutral stimuli during fear learning. Our findings provide a proximal measure of the involvement of cardiac vagal dynamics into the psychophysiology of fear learning and extinction, thus offering new insights for the characterization of fear in mental health and illness.

Characterizing cardiac autonomic dynamics of fear learning in humans

Barbieri R.;
2022-01-01

Abstract

Understanding transient dynamics of the autonomic nervous system during fear learning remains a critical step to translate basic research into treatment of fear-related disorders. In humans, it has been demonstrated that fear learning typically elicits transient heart rate deceleration. However, classical analyses of heart rate variability (HRV) fail to disentangle the contribution of parasympathetic and sympathetic systems, and crucially, they are not able to capture phasic changes during fear learning. Here, to gain deeper insight into the physiological underpinnings of fear learning, a novel frequency-domain analysis of heart rate was performed using a short-time Fourier transform, and instantaneous spectral estimates extracted from a point-process modeling algorithm. We tested whether spectral transient components of HRV, used as a noninvasive probe of sympathetic and parasympathetic mechanisms, can dissociate between fear conditioned and neutral stimuli. We found that learned fear elicited a transient heart rate deceleration in anticipation of noxious stimuli. Crucially, results revealed a significant increase in spectral power in the high frequency band when facing the conditioned stimulus, indicating increased parasympathetic (vagal) activity, which distinguished conditioned and neutral stimuli during fear learning. Our findings provide a proximal measure of the involvement of cardiac vagal dynamics into the psychophysiology of fear learning and extinction, thus offering new insights for the characterization of fear in mental health and illness.
2022
autonomic nervous system
fear conditioning
heart rate variability
psychophysiological responses
vagal control
File in questo prodotto:
File Dimensione Formato  
Psychophysiology - 2022 - Battaglia - Characterizing cardiac autonomic dynamics of fear learning in humans.pdf

accesso aperto

Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1234199
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 54
social impact