Magnetic Resonance Thermometry (MRT) is demonstrating huge abilities to guide laser interstitial thermal therapy (LITT) in several organs, such as the brain. Among the methods to perform MRT, Proton Resonance Frequency (PRF) shift holds significant benefits, like tissue independence. Despite its potential, PRF shift-based MRT holds significant challenges affecting the accuracy of reconstructed temperature maps. In particular, susceptibility artifacts due to gas-bubble formation are an important source of error in temperature maps in MRT-guided LITT. This work presents the characterization of the susceptibility artifacts in MRT-guided LITT and the measurement of its size. LITT was performed in gelatin-based phantoms, at 5 W, 2 W, 1 W, and 0.5 W under MRI guidance with a 1.5 T clinical MRI scanner. Temperature images were obtained with a 3D EPI (Echo planar imaging) prototype sequence. Areas of temperature errors were defined as zones of negative temperature variation <-2 degrees C. Moreover, we have analyzed the artifact shape in sagittal, axial and coronal planes. The analysis demonstrates a double-lobe shape for the susceptibility artifact mainly distributed in the sagittal plane. Also, the higher laser power caused a bigger artifact area. Temperature errors of similar to 80 degrees C proved the necessity to avoid susceptibility artifact generation during MRT-guided LITT. The analysis of the influence of the laser power on the artifact has suggested that using low laser power (0.5 W) helps avoid this measurement error.

Characterization of Susceptibility Artifacts in MR-thermometry PRFS-based during Laser Interstitial Thermal Therapy

De Landro, M;Saccomandi, P
2022-01-01

Abstract

Magnetic Resonance Thermometry (MRT) is demonstrating huge abilities to guide laser interstitial thermal therapy (LITT) in several organs, such as the brain. Among the methods to perform MRT, Proton Resonance Frequency (PRF) shift holds significant benefits, like tissue independence. Despite its potential, PRF shift-based MRT holds significant challenges affecting the accuracy of reconstructed temperature maps. In particular, susceptibility artifacts due to gas-bubble formation are an important source of error in temperature maps in MRT-guided LITT. This work presents the characterization of the susceptibility artifacts in MRT-guided LITT and the measurement of its size. LITT was performed in gelatin-based phantoms, at 5 W, 2 W, 1 W, and 0.5 W under MRI guidance with a 1.5 T clinical MRI scanner. Temperature images were obtained with a 3D EPI (Echo planar imaging) prototype sequence. Areas of temperature errors were defined as zones of negative temperature variation <-2 degrees C. Moreover, we have analyzed the artifact shape in sagittal, axial and coronal planes. The analysis demonstrates a double-lobe shape for the susceptibility artifact mainly distributed in the sagittal plane. Also, the higher laser power caused a bigger artifact area. Temperature errors of similar to 80 degrees C proved the necessity to avoid susceptibility artifact generation during MRT-guided LITT. The analysis of the influence of the laser power on the artifact has suggested that using low laser power (0.5 W) helps avoid this measurement error.
2022
Proceedings of 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
978-1-6654-8299-8
Magnetic Resonance Thermometry
susceptibility artifacts
laser interstitial thermal therapy
File in questo prodotto:
File Dimensione Formato  
Characterization_of_Susceptibility_Artifacts_in_MR-thermometry_PRFS-based_during_Laser_Interstitial_Thermal_Therapy.pdf

Open Access dal 23/02/2023

: Publisher’s version
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1234175
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact