In this work, we present a new experimental setup for the assessment of the anisotropic properties of Bovine Pericardium (BP) membranes. The chemically fixed BP samples have been subjected to a bulge test with in situ confocal laser scanning at increasing applied pressure. The high resolution topography provided by the confocal laser scanning has allowed to obtain a quantitative measure of the bulge displacement; after polynomial fitting, principal curvatures have been obtained and a degree of anisotropy (DA) has been defined as the normalized difference between the maximum and minimum principal curvatures. The experiments performed on the BP membranes have allowed us to obtain pressure-displacement data which clearly exhibit distinct principal curvatures indicating an anisotropic response. A comparison with curvatures data obtained on isotropic Nitrile Buthadiene Rubber (NBR) samples has confirmed the effectiveness of the experimental setup for this specific purpose. Numerical simulations of the bulge tests have been performed with the purpose of identifying a range of constitutive parameters which well describes the obtained range of DA on the BP membranes. The DA values have been partially validated with biaxial tests available in literature and with suitably performed uni-axial tensile tests.

Anisotropic Mechanical Response of Bovine Pericardium Membrane Through Bulge Test and In-Situ Confocal-Laser Scanning

D'Andrea, Luca;Bogoni, Francesca;Forzinetti, Elisa;Enei, Viviana;Gastaldi, Dario;Vena, Pasquale
2023-01-01

Abstract

In this work, we present a new experimental setup for the assessment of the anisotropic properties of Bovine Pericardium (BP) membranes. The chemically fixed BP samples have been subjected to a bulge test with in situ confocal laser scanning at increasing applied pressure. The high resolution topography provided by the confocal laser scanning has allowed to obtain a quantitative measure of the bulge displacement; after polynomial fitting, principal curvatures have been obtained and a degree of anisotropy (DA) has been defined as the normalized difference between the maximum and minimum principal curvatures. The experiments performed on the BP membranes have allowed us to obtain pressure-displacement data which clearly exhibit distinct principal curvatures indicating an anisotropic response. A comparison with curvatures data obtained on isotropic Nitrile Buthadiene Rubber (NBR) samples has confirmed the effectiveness of the experimental setup for this specific purpose. Numerical simulations of the bulge tests have been performed with the purpose of identifying a range of constitutive parameters which well describes the obtained range of DA on the BP membranes. The DA values have been partially validated with biaxial tests available in literature and with suitably performed uni-axial tensile tests.
2023
File in questo prodotto:
File Dimensione Formato  
2023-ASME-BiomechEng-Pericardium bulge test.pdf

accesso aperto

: Publisher’s version
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1234015
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact