At present, 4.2 million deaths occur every year due to ambient air pollution, according to the World Health Organization. In view of reducing such a figure, air quality monitoring and reliable data are essential. Nevertheless, local authorities in urban environments, where pollution levels are highest, often face a dilemma. On the one hand, the high costs of reference monitors make their largescale adoption prohibitive, while the easily scalable low-cost sensors often feature significantly lower data quality and lack of calibration. Near reference monitors have been voiced as a promising solution, as they exhibit limited costs, though specific studies assessing their performance against reference monitors are still lacking. This article provides an in-depth assessment of three near reference sensors’ stations performance, through their collocation with regional reference monitors from December 2021 onwards. Two sensors were positioned at high-traffic locations, while the third recorded background pollution levels in Milan, Italy. The sensors’ performance was quantified not only via the coefficient of determination (R2) and the regression model, but also with the Mean Normalized Bias (MNB) and median values. After a first measurement period, sensors were re-calibrated to also appraise their behavioral change, generally exhibiting a performance increase. Results show high correlation for all hourly-recorded pollutants, with peaks for Ozone (O3) (R2 = 0.94) and BC (R2 = 0.93). Although location-specific, such results show an interesting potential for near reference sensors in support of urban air quality planning.

Near-Reference Air Quality Sensors Can Support Local Planning: A Performance Assessment in Milan, Italy

Cruz Torres, Francesco;
2022-01-01

Abstract

At present, 4.2 million deaths occur every year due to ambient air pollution, according to the World Health Organization. In view of reducing such a figure, air quality monitoring and reliable data are essential. Nevertheless, local authorities in urban environments, where pollution levels are highest, often face a dilemma. On the one hand, the high costs of reference monitors make their largescale adoption prohibitive, while the easily scalable low-cost sensors often feature significantly lower data quality and lack of calibration. Near reference monitors have been voiced as a promising solution, as they exhibit limited costs, though specific studies assessing their performance against reference monitors are still lacking. This article provides an in-depth assessment of three near reference sensors’ stations performance, through their collocation with regional reference monitors from December 2021 onwards. Two sensors were positioned at high-traffic locations, while the third recorded background pollution levels in Milan, Italy. The sensors’ performance was quantified not only via the coefficient of determination (R2) and the regression model, but also with the Mean Normalized Bias (MNB) and median values. After a first measurement period, sensors were re-calibrated to also appraise their behavioral change, generally exhibiting a performance increase. Results show high correlation for all hourly-recorded pollutants, with peaks for Ozone (O3) (R2 = 0.94) and BC (R2 = 0.93). Although location-specific, such results show an interesting potential for near reference sensors in support of urban air quality planning.
2022
Near-Reference Air Quality Sensors Can Support Local Planning: A Performance Assessment in Milan, Italy
pollution; calibration; urban policy; intercomparison; collocation
File in questo prodotto:
File Dimensione Formato  
Moroni et al, 2022 - environsciproc-19-00036.pdf

accesso aperto

Descrizione: Conference article
: Publisher’s version
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF Visualizza/Apri
Moroni et al, 2022 - supplementary materials.pdf

accesso aperto

Descrizione: Supplementary materials
: Publisher’s version
Dimensione 356.34 kB
Formato Adobe PDF
356.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact