In this paper, we provide necessary and sufficient conditions for the existence of a unique positive weak solution for some sublinear Dirichlet problems driven by the sum of a quasilinear local and a nonlocal operator, i.e.L-p,L-s = -Delta(p) + (-Delta)(p)(s).Our main result is resemblant to the celebrated work by Brezis-Oswald [Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986) 55-64]. In addition, we prove a regularity result of independent interest.
A Brezis-Oswald approach for mixed local and nonlocal operators
Biagi, S;
2024-01-01
Abstract
In this paper, we provide necessary and sufficient conditions for the existence of a unique positive weak solution for some sublinear Dirichlet problems driven by the sum of a quasilinear local and a nonlocal operator, i.e.L-p,L-s = -Delta(p) + (-Delta)(p)(s).Our main result is resemblant to the celebrated work by Brezis-Oswald [Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986) 55-64]. In addition, we prove a regularity result of independent interest.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s0219199722500572.pdf
Accesso riservato
:
Publisher’s version
Dimensione
385.92 kB
Formato
Adobe PDF
|
385.92 kB | Adobe PDF | Visualizza/Apri |
11311-1233807_Biagi.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
284.08 kB
Formato
Adobe PDF
|
284.08 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.