The effects of a closed-loop recycling methodology are evaluated for degradation using a discontinuous carbon fibre polyamide 6 (CFPA6) composite material. The process comprises two fundamental steps: reclamation and remanufacture. The material properties are analysed over two recycling loops, and CFPA6 specimens show a total decrease of 39.7% (±3.5) in tensile stiffness and 40.4% (±6.1) in tensile strength. The results of polymer characterisation and fibre analysis suggested that the stiffness reduction was likely due to fibre misalignments primarily caused by fibre agglomerations, as a result of incomplete fibre separation, and by fibre breakages from high compaction pressures. The ultimate tensile strain was statistically invariable as a function of recycling loop which indicated minimal variation in polymer structure as a function of recycling loop. To the authors’ best knowledge, the mechanical performance of the virgin CFPA6 is the highest observed for any aligned discontinuous carbon fibre thermoplastic composites in the literature. This is also true for recycled specimens, which are the highest observed for any recycled thermoplastic composite, and, for any recycled discontinuous carbon fibre composite with either thermosetting or thermoplastic matrices.

A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites

Longana M. L.;
2019-01-01

Abstract

The effects of a closed-loop recycling methodology are evaluated for degradation using a discontinuous carbon fibre polyamide 6 (CFPA6) composite material. The process comprises two fundamental steps: reclamation and remanufacture. The material properties are analysed over two recycling loops, and CFPA6 specimens show a total decrease of 39.7% (±3.5) in tensile stiffness and 40.4% (±6.1) in tensile strength. The results of polymer characterisation and fibre analysis suggested that the stiffness reduction was likely due to fibre misalignments primarily caused by fibre agglomerations, as a result of incomplete fibre separation, and by fibre breakages from high compaction pressures. The ultimate tensile strain was statistically invariable as a function of recycling loop which indicated minimal variation in polymer structure as a function of recycling loop. To the authors’ best knowledge, the mechanical performance of the virgin CFPA6 is the highest observed for any aligned discontinuous carbon fibre thermoplastic composites in the literature. This is also true for recycled specimens, which are the highest observed for any recycled thermoplastic composite, and, for any recycled discontinuous carbon fibre composite with either thermosetting or thermoplastic matrices.
2019
Compression moulding
Discontinuous reinforcement
Polymer-matrix composites (PMCs)
Recycling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 38
social impact