In this work, we present the configurable Fast-Time-to-Amplitude Converter (FTAC), a versatile and completely integrated multichannel timing device constituted by 8 high-performance Time-to-Amplitude Converters (TACs) and a smart front-end logic. The designed converter can not only provide state-of-the-art performance in terms of conversion frequency (up to 100Mcps) and timing precision (down to 1.1ps rms, i.e. 2.6 ps Full Width at Half Maximum), but also a unique flexibility to the end user, who can select the most suitable configuration for its specific requirements. Above all, this chip gives the possibility of using the 8 channels separately, as a building block of a multichannel system, or combining the internal converters to reach picosecond precision, that could open the way to on-field exploitation of Super Conducting Nanowire Single Photon Detectors (SNSPDs). The chip provides 11 different configurations among which select the best option in terms of a combination of parallel channels, speed and timing precision.
Configurable multichannel Time-to-Amplitude Converter for advanced TCSPC applications
Francesco Malanga;Giulia Acconcia;Serena Farina;Massimo Ghioni;Ivan Rech
2022-01-01
Abstract
In this work, we present the configurable Fast-Time-to-Amplitude Converter (FTAC), a versatile and completely integrated multichannel timing device constituted by 8 high-performance Time-to-Amplitude Converters (TACs) and a smart front-end logic. The designed converter can not only provide state-of-the-art performance in terms of conversion frequency (up to 100Mcps) and timing precision (down to 1.1ps rms, i.e. 2.6 ps Full Width at Half Maximum), but also a unique flexibility to the end user, who can select the most suitable configuration for its specific requirements. Above all, this chip gives the possibility of using the 8 channels separately, as a building block of a multichannel system, or combining the internal converters to reach picosecond precision, that could open the way to on-field exploitation of Super Conducting Nanowire Single Photon Detectors (SNSPDs). The chip provides 11 different configurations among which select the best option in terms of a combination of parallel channels, speed and timing precision.File | Dimensione | Formato | |
---|---|---|---|
122740E.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
820 kB
Formato
Adobe PDF
|
820 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.