The effect of plastic deformations on the hydrogen embrittlement (HE) of transformation-induced plasticity (TRIP) steel was studied. In situ tensile tests showed that with increasing hydrogen current density, total elongation loss was raised to 36.8% as compared to an uncharged specimen. The electron backscatter diffraction (EBSD) observation indicated that hydrogen charging decreased stacking fault energy (SFE), resulting in the formation of more α′- martensite by both indirect and direct transformation. The α′- martensite volume fraction at the same degree of deformation in uncharged and charged samples was 31% and 39%, respectively. With plastic deformation, reversible trap sites were raised because of the increased dislocation density and the formation of α′- martensite, which was obtained from EBSD characterization and had a good correlation with the results of the thermal desorption spectroscopy (TDS) analysis.

Hydrogen embrittlement behavior in FeCCrNiBSi TRIP steel

Ehsan Norouzi;Laura Maria Vergani
2023-01-01

Abstract

The effect of plastic deformations on the hydrogen embrittlement (HE) of transformation-induced plasticity (TRIP) steel was studied. In situ tensile tests showed that with increasing hydrogen current density, total elongation loss was raised to 36.8% as compared to an uncharged specimen. The electron backscatter diffraction (EBSD) observation indicated that hydrogen charging decreased stacking fault energy (SFE), resulting in the formation of more α′- martensite by both indirect and direct transformation. The α′- martensite volume fraction at the same degree of deformation in uncharged and charged samples was 31% and 39%, respectively. With plastic deformation, reversible trap sites were raised because of the increased dislocation density and the formation of α′- martensite, which was obtained from EBSD characterization and had a good correlation with the results of the thermal desorption spectroscopy (TDS) analysis.
2023
Hydrogen, embrittlement, Plastic deformation, Martensite transformation, Dislocation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2238785423000522-main.pdf

accesso aperto

: Publisher’s version
Dimensione 6.72 MB
Formato Adobe PDF
6.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233582
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact