Purpose Aim of this study is to assess the repeatability of radiomic features on magnetic resonance images (MRI) and their stability to variations in time of repetition (TR), time of echo (TE), slice thickness (ST), and pixel spacing (PS) using vegetable phantoms. Methods The organic phantom was realized using two cucumbers placed inside a cylindrical container, and the analysis was performed using T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted images. One dataset was used to test the repeatability of the radiomic features, whereas other four datasets were used to test the sensitivity of the different MRI sequences to image acquisition parameters (TR, TE, ST, and PS). Four regions of interest (ROIs) were segmented: two for the central part of each cucumber and two for the external parts. Radiomic features were extracted from each ROI using Pyradiomics. To assess the effect of preprocessing on the reduction of variability, features were extracted both before and after the preprocessing. The coefficient of variation (CV) and intra-class correlation coefficient (ICC) were used to evaluate variability. Results The use of intensity standardization increased the stability for the first-order statistics features. Shape and size features were always stable for all the analyses. Textural features were particularly sensitive to changes in ST and PS, although some increase in stability could be obtained by voxel size resampling. When images underwent image preprocessing, the number of stable features (ICC > 0.75 and mean absolute CV < 0.3) was 33 for apparent diffusion coefficient (ADC), 52 for T1w, and 73 for T2w. Conclusions The most critical source of variability is related to changes in voxel size (either caused by changes in ST or PS). Preprocessing increases features stability to both test-retest and variation of the image acquisition parameters for all the types of analyzed MRI (T1w, T2w, and ADC), except for ST.

Repeatability and reproducibility of MRI-radiomic features: A phantom experiment on a 1.5 T scanner

Bologna, Marco;Corino, Valentina D A;Mainardi, Luca;
2023-01-01

Abstract

Purpose Aim of this study is to assess the repeatability of radiomic features on magnetic resonance images (MRI) and their stability to variations in time of repetition (TR), time of echo (TE), slice thickness (ST), and pixel spacing (PS) using vegetable phantoms. Methods The organic phantom was realized using two cucumbers placed inside a cylindrical container, and the analysis was performed using T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted images. One dataset was used to test the repeatability of the radiomic features, whereas other four datasets were used to test the sensitivity of the different MRI sequences to image acquisition parameters (TR, TE, ST, and PS). Four regions of interest (ROIs) were segmented: two for the central part of each cucumber and two for the external parts. Radiomic features were extracted from each ROI using Pyradiomics. To assess the effect of preprocessing on the reduction of variability, features were extracted both before and after the preprocessing. The coefficient of variation (CV) and intra-class correlation coefficient (ICC) were used to evaluate variability. Results The use of intensity standardization increased the stability for the first-order statistics features. Shape and size features were always stable for all the analyses. Textural features were particularly sensitive to changes in ST and PS, although some increase in stability could be obtained by voxel size resampling. When images underwent image preprocessing, the number of stable features (ICC > 0.75 and mean absolute CV < 0.3) was 33 for apparent diffusion coefficient (ADC), 52 for T1w, and 73 for T2w. Conclusions The most critical source of variability is related to changes in voxel size (either caused by changes in ST or PS). Preprocessing increases features stability to both test-retest and variation of the image acquisition parameters for all the types of analyzed MRI (T1w, T2w, and ADC), except for ST.
2023
magnetic resonance imaging
physical phantom
radiomics
File in questo prodotto:
File Dimensione Formato  
2022_Bologna_Repeatability and reproducibility of MRI_Radiomics.pdf

Accesso riservato

: Publisher’s version
Dimensione 4.51 MB
Formato Adobe PDF
4.51 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233532
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 1
social impact