The interpretation and explanation of decision-making processes of neural networks are becoming a key factor in the deep learning field. Although several approaches have been presented for classification problems, the application to regression models needs to be further investigated. In this manuscript we propose a Grad-CAM-inspired approach for the visual explanation of neural network architecture for regression problems. We apply this methodology to a recent physics-informed approach for Nearfield Acoustic Holography, called Kirchhoff-Helmholtz-based Convolutional Neural Network (KHCNN) architecture. We focus on the interpretation of KHCNN using vibrating rectangular plates with different boundary conditions and violin top plates with complex shapes. Results highlight the more informative regions of the input that the network exploits to correctly predict the desired output. The devised approach has been validated in terms of NCC and NMSE using the original input and the filtered one coming from the algorithm.

GRAD-CAM-INSPIRED INTERPRETATION OF NEARFIELD ACOUSTIC HOLOGRAPHY USING PHYSICS-INFORMED EXPLAINABLE NEURAL NETWORK

Hagar Kafri;Marco Olivieri;Fabio Antonacci;Augusto Sarti;
2023-01-01

Abstract

The interpretation and explanation of decision-making processes of neural networks are becoming a key factor in the deep learning field. Although several approaches have been presented for classification problems, the application to regression models needs to be further investigated. In this manuscript we propose a Grad-CAM-inspired approach for the visual explanation of neural network architecture for regression problems. We apply this methodology to a recent physics-informed approach for Nearfield Acoustic Holography, called Kirchhoff-Helmholtz-based Convolutional Neural Network (KHCNN) architecture. We focus on the interpretation of KHCNN using vibrating rectangular plates with different boundary conditions and violin top plates with complex shapes. Results highlight the more informative regions of the input that the network exploits to correctly predict the desired output. The devised approach has been validated in terms of NCC and NMSE using the original input and the filtered one coming from the algorithm.
2023
2023 48th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Grad-CAM, regression, Nearfield Acoustic Holography, Physics-Informed Neural Network
File in questo prodotto:
File Dimensione Formato  
Grad-CAM-Inspired_Interpretation_of_Nearfield_Acoustic_Holography_using_Physics-Informed_Explainable_Neural_Network-2.pdf

Accesso riservato

Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact