A phase field approach for structural topology optimization with application to additive manufacturing is analyzed. The main novelty is the penalization of overhangs (regions of the design that require underlying support structures during construction) with anisotropic energy functionals. Convex and non-convex examples are provided, with the latter showcasing oscillatory behavior along the object boundary termed the dripping effect in the literature. We provide a rigorous mathematical analysis for the structural topology optimization problem with convex and non-continuously-differentiable anisotropies, deriving the first order necessary optimality condition using subdifferential calculus. Via formally matched asymptotic expansions we connect our approach with previous works in the literature based on a sharp interface shape optimization description. Finally, we present several numerical results to demonstrate the advantages of our proposed approach in penalizing overhang developments.

Overhang Penalization in Additive Manufacturing via Phase Field Structural Topology Optimization with Anisotropic Energies

Signori A.
2023-01-01

Abstract

A phase field approach for structural topology optimization with application to additive manufacturing is analyzed. The main novelty is the penalization of overhangs (regions of the design that require underlying support structures during construction) with anisotropic energy functionals. Convex and non-convex examples are provided, with the latter showcasing oscillatory behavior along the object boundary termed the dripping effect in the literature. We provide a rigorous mathematical analysis for the structural topology optimization problem with convex and non-continuously-differentiable anisotropies, deriving the first order necessary optimality condition using subdifferential calculus. Via formally matched asymptotic expansions we connect our approach with previous works in the literature based on a sharp interface shape optimization description. Finally, we present several numerical results to demonstrate the advantages of our proposed approach in penalizing overhang developments.
2023
File in questo prodotto:
File Dimensione Formato  
s00245-022-09939-z.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1233179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact