Tiny Machine Learning (TinyML) is a novel research area aiming at designing machine and deep learning models and algorithms able to be executed on tiny devices such as Internet-of-Things units, edge devices or embedded systems. In this paper we introduce, for the first time in the literature, a TinyML solution for presence-detection based on UltrawideBand (UWB) radar, which is a particularly promising radar technology for pervasive systems. To achieve this goal we introduce a novel family of tiny convolutional neural networks for the processing of UWB-radar data characterized by a reduced memory footprint and computational demand so as to satisfy the severe technological constraints of tiny devices. From this technological perspective, UWB-radars are particularly relevant in the presence-detection scenario since they do not acquire sensitive information of users (e.g., images, videos or audio), hence preserving their privacy.The proposed solution has been successfully tested on a public-available benchmark for the indoor presence detection and on a real-world application of in-car presence detection.

TinyML for UWB-radar based presence detection

Pavan, M;Roveri, M
2022-01-01

Abstract

Tiny Machine Learning (TinyML) is a novel research area aiming at designing machine and deep learning models and algorithms able to be executed on tiny devices such as Internet-of-Things units, edge devices or embedded systems. In this paper we introduce, for the first time in the literature, a TinyML solution for presence-detection based on UltrawideBand (UWB) radar, which is a particularly promising radar technology for pervasive systems. To achieve this goal we introduce a novel family of tiny convolutional neural networks for the processing of UWB-radar data characterized by a reduced memory footprint and computational demand so as to satisfy the severe technological constraints of tiny devices. From this technological perspective, UWB-radars are particularly relevant in the presence-detection scenario since they do not acquire sensitive information of users (e.g., images, videos or audio), hence preserving their privacy.The proposed solution has been successfully tested on a public-available benchmark for the indoor presence detection and on a real-world application of in-car presence detection.
2022
Proceedings of the International Joint Conference on Neural Networks - 2022
978-1-7281-8671-9
Tiny Machine Learning
UltraWideBand (UWB) radar
Presence detection
Privacy-preserving computation
File in questo prodotto:
File Dimensione Formato  
TinyML_for_UWB-radar_based_presence_detection.pdf

accesso aperto

Dimensione 958.01 kB
Formato Adobe PDF
958.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact