Patients suffering from neuromuscular diseases experience motor disabilities which hinder their independence during activities of daily living (ADLs). For such impaired subjects, robotic devices and Functional Electrical Stimulation (FES) are technologies commonly used to rehabilitate lost functions. Nevertheless, both systems present some limitations, and merging FES and robots in Hybrid Robotic Rehabilitation Systems allows to overcome these boundaries. Here we propose for the first time a hybrid cooperative controller involving FES and a soft wearable upper arm exosuit to rehabilitate elbow movements. We tested the designed hybrid controller on six healthy participants. The results showed how the proposed hybrid controller allowed the wearers to perform flexion movements with no significant decrease in accuracy and precision with respect to the exosuit alone, while significantly decreasing the fatigue level by about 63% and delaying its onset with respect to the FES action alone.

Adaptive Hybrid FES-Force Controller for Arm Exosuit

Pedrocchi, Alessandra;Ambrosini, Emilia;
2022-01-01

Abstract

Patients suffering from neuromuscular diseases experience motor disabilities which hinder their independence during activities of daily living (ADLs). For such impaired subjects, robotic devices and Functional Electrical Stimulation (FES) are technologies commonly used to rehabilitate lost functions. Nevertheless, both systems present some limitations, and merging FES and robots in Hybrid Robotic Rehabilitation Systems allows to overcome these boundaries. Here we propose for the first time a hybrid cooperative controller involving FES and a soft wearable upper arm exosuit to rehabilitate elbow movements. We tested the designed hybrid controller on six healthy participants. The results showed how the proposed hybrid controller allowed the wearers to perform flexion movements with no significant decrease in accuracy and precision with respect to the exosuit alone, while significantly decreasing the fatigue level by about 63% and delaying its onset with respect to the FES action alone.
2022
Proceedings International Conference on Rehabilitation Robotics, ICORR 2022
978-1-6654-8829-7
File in questo prodotto:
File Dimensione Formato  
Adaptive_Hybrid_FES-Force_Controller_for_Arm_Exosuit.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 5
social impact