Effective and automated verification techniques able to provide assurances of performance and scalability are highly demanded in the context of microservices systems. In this paper, we introduce a methodology that applies specification-driven load testing to learn the behavior of the target microservices system under multiple deployment configurations. Testing is driven by realistic workload conditions sampled in production. The sampling produces a formal description of the users' behavior through a Discrete Time Markov Chain. This model drives multiple load testing sessions that query the system under test and feed a Bayesian inference process which incrementally refines the initial model to obtain a complete specification from run-time evidence as a Continuous Time Markov Chain. The complete specification is then used to conduct automated verification by using probabilistic model checking and to compute a configuration score that evaluates alternative deployment options. This paper introduces the methodology, its theoretical foundation, and the toolchain we developed to automate it. Our empirical evaluation shows its applicability, benefits, and costs on a representative microservices system benchmark. We show that the methodology detects performance issues, traces them back to system-level requirements, and, thanks to the configuration score, provides engineers with insights on deployment options. The comparison between our approach and a selected state-of-the-art baseline shows that we are able to reduce the cost up to 73% in terms of number of tests. The verification stage requires negligible execution time and memory consumption. We observed that the verification of 360 system-level requirements took ~1 minute by consuming at most 34 KB. The computation of the score involved the verification of ~7k (automatically generated) properties verified in ~72 seconds using at most ~50 KB. (C)& nbsp;2022 The Author(s). Published by Elsevier Inc.& nbsp;

Automated test-based learning and verification of performance models for microservices systems

Camilli, M;
2022-01-01

Abstract

Effective and automated verification techniques able to provide assurances of performance and scalability are highly demanded in the context of microservices systems. In this paper, we introduce a methodology that applies specification-driven load testing to learn the behavior of the target microservices system under multiple deployment configurations. Testing is driven by realistic workload conditions sampled in production. The sampling produces a formal description of the users' behavior through a Discrete Time Markov Chain. This model drives multiple load testing sessions that query the system under test and feed a Bayesian inference process which incrementally refines the initial model to obtain a complete specification from run-time evidence as a Continuous Time Markov Chain. The complete specification is then used to conduct automated verification by using probabilistic model checking and to compute a configuration score that evaluates alternative deployment options. This paper introduces the methodology, its theoretical foundation, and the toolchain we developed to automate it. Our empirical evaluation shows its applicability, benefits, and costs on a representative microservices system benchmark. We show that the methodology detects performance issues, traces them back to system-level requirements, and, thanks to the configuration score, provides engineers with insights on deployment options. The comparison between our approach and a selected state-of-the-art baseline shows that we are able to reduce the cost up to 73% in terms of number of tests. The verification stage requires negligible execution time and memory consumption. We observed that the verification of 360 system-level requirements took ~1 minute by consuming at most 34 KB. The computation of the score involved the verification of ~7k (automatically generated) properties verified in ~72 seconds using at most ~50 KB. (C)& nbsp;2022 The Author(s). Published by Elsevier Inc.& nbsp;
2022
Performance testing
Test-based model learning
Markov models
Automated verification
Microservices
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0164121222000061-main (1).pdf

accesso aperto

: Publisher’s version
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact