: Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that would be suggestive of super-heavy particles decaying in the Galactic halo. These particles could have been produced during the post-inflationary epoch and match the relic abundance of dark matter inferred today. The nonobservation of the signatures searched for allows us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: α_{X}≲0.09, for 10^{9}≲M_{X}/GeV<10^{19}. Conversely, we obtain that, for instance, a reduced coupling constant α_{X}=0.09 excludes masses M_{X}≳3×10^{13}  GeV. In the context of dark matter production from gravitational interactions alone, we illustrate how these bounds are complementary to those obtained on the Hubble rate at the end of inflation from the nonobservation of tensor modes in the cosmological microwave background.

Limits to Gauge Coupling in the Dark Sector Set by the Nonobservation of Instanton-Induced Decay of Super-Heavy Dark Matter in the Pierre Auger Observatory Data

Consolati, G;
2023-01-01

Abstract

: Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that would be suggestive of super-heavy particles decaying in the Galactic halo. These particles could have been produced during the post-inflationary epoch and match the relic abundance of dark matter inferred today. The nonobservation of the signatures searched for allows us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: α_{X}≲0.09, for 10^{9}≲M_{X}/GeV<10^{19}. Conversely, we obtain that, for instance, a reduced coupling constant α_{X}=0.09 excludes masses M_{X}≳3×10^{13}  GeV. In the context of dark matter production from gravitational interactions alone, we illustrate how these bounds are complementary to those obtained on the Hubble rate at the end of inflation from the nonobservation of tensor modes in the cosmological microwave background.
2023
File in questo prodotto:
File Dimensione Formato  
ABREP02-23.pdf

Accesso riservato

: Publisher’s version
Dimensione 331.98 kB
Formato Adobe PDF
331.98 kB Adobe PDF   Visualizza/Apri
ABREP_OA_02-23.pdf

Open Access dal 08/02/2023

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 385.22 kB
Formato Adobe PDF
385.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232642
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact