Blood pressure (BP) is known as an indicator of human health status, and regular measurement is helpful for early detection of cardiovascular diseases. Traditional techniques for measuring BP are either invasive or cuff-based and thus are not suitable for continuous measurement. Aiming at the deficiencies in existing studies, a novel cuffless BP estimation framework of Receptive Field Parallel Attention Shrinkage Network (RFPASN) and BP range constraint is proposed. Firstly, RFPASN uses the multi-scale large receptive field convolution module to capture the long-term dynamics in the photoplethysmography (PPG) signal without using long short-term memory (LSTM). On this basis, the features acquired by the parallel mixed domain attention module are used as thresholds, and the soft threshold function is used to screen the input features to enhance the discriminability and robustness of features, which can significantly improve the prediction accuracy of diastolic blood pressure (DBP) and systolic blood pressure (SBP). Finally, in order to prevent large fluctuations in the prediction results of RFPASN, RFPASN based on BP range constraint is proposed to make the prediction results of RFPASN more accurate and reasonable. The performance of the proposed method is demonstrated on a publically available MIMIC-II database. The database contains normal, hypertensive and hypotensive people. We have achieved MAE of 1.63/1.59 (DBP) and 2.26/2.15 (SBP) mmHg for BP on total population of 1562 subjects. A comparative study shows that the proposed algorithm is more promising than the state-of-the-art.(C) 2022 Published by Elsevier Ltd.

A new deep learning framework based on blood pressure range constraint for continuous cuffless BP estimation

Karimi, Hamid Reza;
2022-01-01

Abstract

Blood pressure (BP) is known as an indicator of human health status, and regular measurement is helpful for early detection of cardiovascular diseases. Traditional techniques for measuring BP are either invasive or cuff-based and thus are not suitable for continuous measurement. Aiming at the deficiencies in existing studies, a novel cuffless BP estimation framework of Receptive Field Parallel Attention Shrinkage Network (RFPASN) and BP range constraint is proposed. Firstly, RFPASN uses the multi-scale large receptive field convolution module to capture the long-term dynamics in the photoplethysmography (PPG) signal without using long short-term memory (LSTM). On this basis, the features acquired by the parallel mixed domain attention module are used as thresholds, and the soft threshold function is used to screen the input features to enhance the discriminability and robustness of features, which can significantly improve the prediction accuracy of diastolic blood pressure (DBP) and systolic blood pressure (SBP). Finally, in order to prevent large fluctuations in the prediction results of RFPASN, RFPASN based on BP range constraint is proposed to make the prediction results of RFPASN more accurate and reasonable. The performance of the proposed method is demonstrated on a publically available MIMIC-II database. The database contains normal, hypertensive and hypotensive people. We have achieved MAE of 1.63/1.59 (DBP) and 2.26/2.15 (SBP) mmHg for BP on total population of 1562 subjects. A comparative study shows that the proposed algorithm is more promising than the state-of-the-art.(C) 2022 Published by Elsevier Ltd.
2022
BP range constraint
Blood pressure (BP)
Parallel mixed domain attention mechanism
Photoplethysmography (PPG)
Receptive field
Soft threshold
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232506
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact