Nowadays a wide range of applications is constrained by low-latency requirements that cloud infrastructures cannot meet. Multi-access Edge Computing (MEC) has been proposed as the reference architecture for executing applications closer to users and reducing latency, but new challenges arise: edge nodes are resource-constrained, the workload can vary significantly since users are nomadic, and task complexity is increasing (e.g., machine learning inference). To overcome these problems, the paper presents NEPTUNE, a serverless-based framework for managing complex MEC solutions. NEPTUNE i) places functions on edge nodes according to user locations, ii) avoids the saturation of single nodes, iii) exploits GPUs when available, and iv) allocates resources (CPU cores) dynamically to meet foreseen execution times. A prototype, built on top of K3S, was used to evaluate NEPTUNE on a set of experiments that demonstrate a significant reduction in terms of response time, network overhead, and resource consumption compared to three well-known approaches.

NEPTUNE: Network- and GPU-aware Management of Serverless Functions at the Edge

Baresi, L;Hu, DYX;Quattrocchi, G;Terracciano, L
2022-01-01

Abstract

Nowadays a wide range of applications is constrained by low-latency requirements that cloud infrastructures cannot meet. Multi-access Edge Computing (MEC) has been proposed as the reference architecture for executing applications closer to users and reducing latency, but new challenges arise: edge nodes are resource-constrained, the workload can vary significantly since users are nomadic, and task complexity is increasing (e.g., machine learning inference). To overcome these problems, the paper presents NEPTUNE, a serverless-based framework for managing complex MEC solutions. NEPTUNE i) places functions on edge nodes according to user locations, ii) avoids the saturation of single nodes, iii) exploits GPUs when available, and iv) allocates resources (CPU cores) dynamically to meet foreseen execution times. A prototype, built on top of K3S, was used to evaluate NEPTUNE on a set of experiments that demonstrate a significant reduction in terms of response time, network overhead, and resource consumption compared to three well-known approaches.
2022
Proceedings of the International Symposium on Software Engineering for Adaptive and Self-Managing Systems
9781450393058
serverless
edge computing
gpu
placement
dynamic resource allocation
control theory
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 0
social impact