The advent of high-speed trains led to new issues and constraints for railway network manufacturers and operators. This is the case of crosswind effect, that occurs when train is running in strong wind conditions. The combination of train speed and wind speed generates a relative flow that affects the train stability. Wind tunnel tests on still railway vehicles (relative wind-train velocity in coincidence with absolute wind velocity) are mandatory according to Technical Specification for Interoperability (TSI) to ensure high-speed train safety. However, issues related to the correct evaluation of the full-scale aerodynamic behaviour of the trains can arise. In the present work, aerodynamic force and pressure coefficients measured in wind tunnel tests on a scaled model of ETR1000 high-speed train on single track ballast and rails are presented. The tests were performed in the GVPM wind tunnel of Politecnico di Milano. Results show that different flow behaviours can occur at high yaw angles when the train behaves like a bluff body depending on wind speed used during the test.

Evaluation of the Aerodynamic Effect of a Smooth Rounded Roof on Crosswind Stability of a Train by Wind Tunnel Tests

Araya Reyes C. E.;Brambilla E.;Tomasini G.
2023-01-01

Abstract

The advent of high-speed trains led to new issues and constraints for railway network manufacturers and operators. This is the case of crosswind effect, that occurs when train is running in strong wind conditions. The combination of train speed and wind speed generates a relative flow that affects the train stability. Wind tunnel tests on still railway vehicles (relative wind-train velocity in coincidence with absolute wind velocity) are mandatory according to Technical Specification for Interoperability (TSI) to ensure high-speed train safety. However, issues related to the correct evaluation of the full-scale aerodynamic behaviour of the trains can arise. In the present work, aerodynamic force and pressure coefficients measured in wind tunnel tests on a scaled model of ETR1000 high-speed train on single track ballast and rails are presented. The tests were performed in the GVPM wind tunnel of Politecnico di Milano. Results show that different flow behaviours can occur at high yaw angles when the train behaves like a bluff body depending on wind speed used during the test.
2023
crosswind
force aerodynamic coefficients
high-speed trains
pressure aerodynamic coefficients
train aerodynamics
wind tunnel tests
File in questo prodotto:
File Dimensione Formato  
applsci-13-00232.pdf

accesso aperto

: Publisher’s version
Dimensione 3.04 MB
Formato Adobe PDF
3.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact