Accurate flow forecasting may support responsible institutions in managing river systems and limiting damages due to high water levels. Machine-learning models are known to describe many nonlinear hydrological phenomena, but up to now, they have mainly provided a single future value with a fixed information structure. This study trains and tests multi-step deep neural networks with different inputs to forecast the water stage of two sub-alpine urbanized catchments. They prove effective for one hour ahead flood stage values and occurrences. Convolutional neural networks (CNNs) perform better when only past information on the water stage is used. Long short-term memory nets (LSTMs) are more suited to exploit the data coming from the rain gauges. Predicting a set of water stages over the following hour rather than just a single future value may help concerned agencies take the most urgent actions. The paper also shows that the architecture developed for one catchment can be adapted to similar ones maintaining high accuracy.

Neural Structures to Predict River Stages in Heavily Urbanized Catchments

Chiacchiera, A;Guariso, G
2022-01-01

Abstract

Accurate flow forecasting may support responsible institutions in managing river systems and limiting damages due to high water levels. Machine-learning models are known to describe many nonlinear hydrological phenomena, but up to now, they have mainly provided a single future value with a fixed information structure. This study trains and tests multi-step deep neural networks with different inputs to forecast the water stage of two sub-alpine urbanized catchments. They prove effective for one hour ahead flood stage values and occurrences. Convolutional neural networks (CNNs) perform better when only past information on the water stage is used. Long short-term memory nets (LSTMs) are more suited to exploit the data coming from the rain gauges. Predicting a set of water stages over the following hour rather than just a single future value may help concerned agencies take the most urgent actions. The paper also shows that the architecture developed for one catchment can be adapted to similar ones maintaining high accuracy.
2022
machine learning
neural networks
multi-step ahead
flood forecasting
sub-alpine catchments
Lura and Laveggio rivers
File in questo prodotto:
File Dimensione Formato  
water-14-02330-v2.pdf

accesso aperto

Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1231967
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact