The floating structure problem describes the interaction between surface water waves and a floating body, generally a boat or a wave energy converter. As recently shown by Lannes, the equations for the fluid motion can be reduced to a set of two evolution equations on the surface elevation and the horizontal discharge. The presence of the object is accounted for by a constraint on the discharge under the object; the pressure exerted by the fluid on this object is then the Lagrange multiplier associated with this constraint. Our goal in this paper is to prove the well-posedness of this fluid-structure interaction problem in the shallow water approximation under the assumption that the flow is axisymmetric without swirl. We write the fluid equations as a quasilinear hyperbolic mixed initial boundary value problem and the solid equation as a second order ODE coupled to the fluid equations. Finally we prove the local in time well-posedness for this coupled problem, provided some compatibility conditions on the initial data are satisfied.

Floating Structures in Shallow Water: Local Well-posedness in the Axisymmetric Case

Edoardo Bocchi
2020-01-01

Abstract

The floating structure problem describes the interaction between surface water waves and a floating body, generally a boat or a wave energy converter. As recently shown by Lannes, the equations for the fluid motion can be reduced to a set of two evolution equations on the surface elevation and the horizontal discharge. The presence of the object is accounted for by a constraint on the discharge under the object; the pressure exerted by the fluid on this object is then the Lagrange multiplier associated with this constraint. Our goal in this paper is to prove the well-posedness of this fluid-structure interaction problem in the shallow water approximation under the assumption that the flow is axisymmetric without swirl. We write the fluid equations as a quasilinear hyperbolic mixed initial boundary value problem and the solid equation as a second order ODE coupled to the fluid equations. Finally we prove the local in time well-posedness for this coupled problem, provided some compatibility conditions on the initial data are satisfied.
2020
fluid mechanics
hydrodynamics
fluid-structure interaction
nonlinear shallow water equations
initial boundary value problem for hyperbolic PDEs
File in questo prodotto:
File Dimensione Formato  
11311-1231919_Bocchi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 563.08 kB
Formato Adobe PDF
563.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1231919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 7
social impact