This paper assesses the response to radiation effects of the RIGEL, the Application Specific Integrated Circuit developed within the framework of the PixDD project, to be coupled with a multi-pixel sensor based on Silicon Drift Detectors for operation at the focal plane of X-ray optics on board space-borne astronomy missions. The campaign was conducted at the heavy ion beam line of the Radiation Effects Facility of the University of Jyvaskyla (Finland): both the response to Single Event Effects (latch-ups and bit flips) and to Total Ionising Dose was evaluated. Experimental data were combined with simulations of the in-orbit environment for two scenarios: an equatorial and a Sun-synchronous orbit. The study demonstrated that the device can be safely operated on an equatorial orbit without any dedicated circuitry to mitigate Single Event Effects, although this precaution is instead advisable in the case of a Sun-synchronous orbit. Spectroscopic degradation resulting from Total Ionising Dose stays below 10% up to 34 krad, a manageable value for both orbital configurations.
Study of radiation-induced effects on the RIGEL ASIC
Dedolli, I;Mele, F;Bertuccio, G;Borghi, G;Gandola, M;
2022-01-01
Abstract
This paper assesses the response to radiation effects of the RIGEL, the Application Specific Integrated Circuit developed within the framework of the PixDD project, to be coupled with a multi-pixel sensor based on Silicon Drift Detectors for operation at the focal plane of X-ray optics on board space-borne astronomy missions. The campaign was conducted at the heavy ion beam line of the Radiation Effects Facility of the University of Jyvaskyla (Finland): both the response to Single Event Effects (latch-ups and bit flips) and to Total Ionising Dose was evaluated. Experimental data were combined with simulations of the in-orbit environment for two scenarios: an equatorial and a Sun-synchronous orbit. The study demonstrated that the device can be safely operated on an equatorial orbit without any dedicated circuitry to mitigate Single Event Effects, although this precaution is instead advisable in the case of a Sun-synchronous orbit. Spectroscopic degradation resulting from Total Ionising Dose stays below 10% up to 34 krad, a manageable value for both orbital configurations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.