Skin-friction decompositions such as the so-called FIK identity (Fukagata et al., 2002) are useful tools in identifying relevant contributions to the friction, but may also lead to results difficult to interpret when the total friction is recovered from cancellation of multiple terms with large values. We propose a new formulation of the FIK contributions related to streamwise inhomogeneity, which is derived from the convective form of the momentum equation and using the concept of dynamic pressure. We examine turbulent boundary layers subjected to various pressure-gradient conditions, including cases with drag-reducing control. The new formulation distinguishes more precisely the roles of the free-stream pressure distribution, wall-normal convection, and turbulent fluctuations. Our results allow to identify different regimes in adverse-pressure-gradient turbulent boundary layers, corresponding to different proportions of the various contributions, and suggest a possible direction towards studying the onset of mean separation.

A New Point of View on Skin-Friction Contributions in Adverse-Pressure-gradient Turbulent Boundary Layers

Atzori M.;
2022-01-01

Abstract

Skin-friction decompositions such as the so-called FIK identity (Fukagata et al., 2002) are useful tools in identifying relevant contributions to the friction, but may also lead to results difficult to interpret when the total friction is recovered from cancellation of multiple terms with large values. We propose a new formulation of the FIK contributions related to streamwise inhomogeneity, which is derived from the convective form of the momentum equation and using the concept of dynamic pressure. We examine turbulent boundary layers subjected to various pressure-gradient conditions, including cases with drag-reducing control. The new formulation distinguishes more precisely the roles of the free-stream pressure distribution, wall-normal convection, and turbulent fluctuations. Our results allow to identify different regimes in adverse-pressure-gradient turbulent boundary layers, corresponding to different proportions of the various contributions, and suggest a possible direction towards studying the onset of mean separation.
2022
12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)
File in questo prodotto:
File Dimensione Formato  
ATZOM04-22.pdf

accesso aperto

: Publisher’s version
Dimensione 675.38 kB
Formato Adobe PDF
675.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1231561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact