We present an accurate and efficient solver for atmospheric dynamics simulations that allows for non-conforming mesh refinement. The model equations are the conserva-tive Euler equations for compressible flows. The numerical method is based on an h-adaptive Discontinuous Galerkin spatial discretization and on a second order Additive Runge Kutta IMEX method for time discretization, especially designed for low Mach regimes. The solver is implemented in the framework of the deal.II library, whose mesh refinement capabilities are employed to enhance efficiency. A number of numerical experiments based on classical benchmarks for atmosphere dynamics demonstrate the properties and advantages of the proposed method.
An IMEX-DG solver for atmospheric dynamics simulations with adaptive mesh refinement
Orlando, Giuseppe;Bonaventura, Luca
2023-01-01
Abstract
We present an accurate and efficient solver for atmospheric dynamics simulations that allows for non-conforming mesh refinement. The model equations are the conserva-tive Euler equations for compressible flows. The numerical method is based on an h-adaptive Discontinuous Galerkin spatial discretization and on a second order Additive Runge Kutta IMEX method for time discretization, especially designed for low Mach regimes. The solver is implemented in the framework of the deal.II library, whose mesh refinement capabilities are employed to enhance efficiency. A number of numerical experiments based on classical benchmarks for atmosphere dynamics demonstrate the properties and advantages of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
orlando_bon_ben_jcmam_2023.pdf
Accesso riservato
:
Publisher’s version
Dimensione
5.76 MB
Formato
Adobe PDF
|
5.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.