In this study, we assessed the potential effects of climate change upon the productivity of mountain pastures in the Valtellina valley of Italy. Two species, Trisetum flavescens and Nardus stricta, among the most abundant in Italian pastures, were chosen for the simulation of low- and high-altitude pastures, respectively. We introduced some agroclimatic indices, related to growing season parameters, climate, and water availability, to evaluate the impacts of climate change upon pasture production. First, the dynamic of the pasture species was evaluated for the present period using the climate-driven, hydrologically based model Poli-Hydro, nesting the Poli-Pasture module simulating plants growth. Poli-Pasture was validated against yield data, at province scale, and at local scale. Then, agroclimatic indices were calculated. Subsequently, IPCC scenarios of the Fifth and Sixth Assessment Reports (AR5 and AR6) were used to project species production and agroclimatic indices until the end of the 21st century. In response to increased temperature under all scenarios, a large potential for an increased growing season length and species yield overall (between +30% and +180% for AR5 at 2100) was found. Potential for decreased yield (until −31% for AR5) is seen below 1100 m asl in response to heat stress; however, it is compensated by a large increase higher up (between +50% and +140% for AR5 above 2000 m asl). Larger evapotranspiration is foreseen and larger water demand expected. However, specific (for hectares of pasture) water use would decrease visibly, and no significant water limitations would be seen. Results provide preliminary evidence of potential livestock, and thereby economic development in the valley at higher altitudes than now.

Climate Change Effects upon Pasture in the Alps: The Case of Valtellina Valley, Italy

Casale F.;Bocchiola D.
2022-01-01

Abstract

In this study, we assessed the potential effects of climate change upon the productivity of mountain pastures in the Valtellina valley of Italy. Two species, Trisetum flavescens and Nardus stricta, among the most abundant in Italian pastures, were chosen for the simulation of low- and high-altitude pastures, respectively. We introduced some agroclimatic indices, related to growing season parameters, climate, and water availability, to evaluate the impacts of climate change upon pasture production. First, the dynamic of the pasture species was evaluated for the present period using the climate-driven, hydrologically based model Poli-Hydro, nesting the Poli-Pasture module simulating plants growth. Poli-Pasture was validated against yield data, at province scale, and at local scale. Then, agroclimatic indices were calculated. Subsequently, IPCC scenarios of the Fifth and Sixth Assessment Reports (AR5 and AR6) were used to project species production and agroclimatic indices until the end of the 21st century. In response to increased temperature under all scenarios, a large potential for an increased growing season length and species yield overall (between +30% and +180% for AR5 at 2100) was found. Potential for decreased yield (until −31% for AR5) is seen below 1100 m asl in response to heat stress; however, it is compensated by a large increase higher up (between +50% and +140% for AR5 above 2000 m asl). Larger evapotranspiration is foreseen and larger water demand expected. However, specific (for hectares of pasture) water use would decrease visibly, and no significant water limitations would be seen. Results provide preliminary evidence of potential livestock, and thereby economic development in the valley at higher altitudes than now.
2022
agroclimatic indices
climate change
grasslands
hydrological modeling
Italian Alps
pasture modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1230644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact