Many techniques are available for estimating landslide surface displacements, whether from the ground, air- or spaceborne. In recent years, Unmanned Areal Vehicles have also been applied in the domain of landslide hazards, and have been able to provide high resolution and precise datasets for better understanding and predicting landslide movements and mitigating their impacts. In this study, we propose an approach for monitoring and detecting landslide surface movements using a low-cost lightweight consumer-grade UAV setup and a Red Relief Image Map (a topographic visualization technique) to normalize the input datasets and mitigate unfavourable illumination conditions that may affect the further implementation of Lucas-Kanade optical flow for the final displacement estimation. The effectiveness of the proposed approach in this study was demonstrated by applying it to the Ruinon landslide, Northern Italy, using the products of surveys carried out in the period 2019-2021. Our results show that the combination of different techniques can accurately and effectively estimate landslide movements over time and at different magnitudes, from a few centimetres to more than several tens of meters. The method applied is shown to be very computationally efficient while yielding precise outputs. At the same time, the use of only free and open-source software allows its straightforward adaptation and modification for other case studies. The approach can potentially be used for monitoring and studying landslide behaviour in areas where no permanent monitoring solutions are present.
Estimating Landslide Surface Displacement by Combining Low-Cost UAV Setup, Topographic Visualization and Computer Vision Techniques
Yordanov, Vasil;Truong, Quang Xuan;Brovelli, Maria Antonia
2023-01-01
Abstract
Many techniques are available for estimating landslide surface displacements, whether from the ground, air- or spaceborne. In recent years, Unmanned Areal Vehicles have also been applied in the domain of landslide hazards, and have been able to provide high resolution and precise datasets for better understanding and predicting landslide movements and mitigating their impacts. In this study, we propose an approach for monitoring and detecting landslide surface movements using a low-cost lightweight consumer-grade UAV setup and a Red Relief Image Map (a topographic visualization technique) to normalize the input datasets and mitigate unfavourable illumination conditions that may affect the further implementation of Lucas-Kanade optical flow for the final displacement estimation. The effectiveness of the proposed approach in this study was demonstrated by applying it to the Ruinon landslide, Northern Italy, using the products of surveys carried out in the period 2019-2021. Our results show that the combination of different techniques can accurately and effectively estimate landslide movements over time and at different magnitudes, from a few centimetres to more than several tens of meters. The method applied is shown to be very computationally efficient while yielding precise outputs. At the same time, the use of only free and open-source software allows its straightforward adaptation and modification for other case studies. The approach can potentially be used for monitoring and studying landslide behaviour in areas where no permanent monitoring solutions are present.File | Dimensione | Formato | |
---|---|---|---|
drones-07-00085-v2.pdf
accesso aperto
:
Publisher’s version
Dimensione
57.68 MB
Formato
Adobe PDF
|
57.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.