Multidimensional fluorescence microscopy techniques produce dataset rich of information (space, emission spec- trum and lifetime) to investigate photophysical processes in biological samples. To acquire a 4D dataset, one promising microscope design is based on the single-pixel camera scheme and on compressive sensing acquisitions, thanks to which the measurement time can be reduced. Within this framework, a computational step is required to move from the acquisition space to the pixel space and, subsequently, the analysis can be carried out exploiting the high dimensionality. In this work we present an experimental system and a fast-fit method that can produce a map of fluorophore concentrations in parallel to the measurement routine.
Multispectral time-resolved fluorescence microscopy based on compressive acquisitions
Ghezzi A.;Valentini G.;Bassi A.;D'Andrea C.
2022-01-01
Abstract
Multidimensional fluorescence microscopy techniques produce dataset rich of information (space, emission spec- trum and lifetime) to investigate photophysical processes in biological samples. To acquire a 4D dataset, one promising microscope design is based on the single-pixel camera scheme and on compressive sensing acquisitions, thanks to which the measurement time can be reduced. Within this framework, a computational step is required to move from the acquisition space to the pixel space and, subsequently, the analysis can be carried out exploiting the high dimensionality. In this work we present an experimental system and a fast-fit method that can produce a map of fluorophore concentrations in parallel to the measurement routine.File | Dimensione | Formato | |
---|---|---|---|
Ghezzi et al. - 2023 - compressive acquisitions.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.