This paper studies the safe motion of a hopping rover on hazardous terrains of small bodies in the presence of initial state errors and dynamic parameter uncertainties. The collision probability is adopted to optimize the hopping trajectory. Firstly, the hazardous terrain is characterized by the least square median method, and the feasible path point zone is defined for hopping motion. Meanwhile, the hopping trajectory optimization is converted into sequence path point planning and optimal trajectory design problems based on the classical path planning algorithm. Then, considering the effects of errors and uncertainties, a performance index is derived to design a continuous hopping trajectory of sequence path points. Taking the collision probability as an index to indicate safety, local path points are optimized through path point decomposition and replacement strategy. Therefore, a collision-probability-based continuous optimal hopping trajectory can be generated to realize safe and precise motion. Finally, with the simulated hazardous terrain based on the small body 433 Eros, the effectiveness of the proposed method is verified by numerical analysis.
Collision-probability-based hopping trajectory optimization on hazardous terrain of small bodies
Zhao, Chuncheng;Di Lizia, Pierluigi
2023-01-01
Abstract
This paper studies the safe motion of a hopping rover on hazardous terrains of small bodies in the presence of initial state errors and dynamic parameter uncertainties. The collision probability is adopted to optimize the hopping trajectory. Firstly, the hazardous terrain is characterized by the least square median method, and the feasible path point zone is defined for hopping motion. Meanwhile, the hopping trajectory optimization is converted into sequence path point planning and optimal trajectory design problems based on the classical path planning algorithm. Then, considering the effects of errors and uncertainties, a performance index is derived to design a continuous hopping trajectory of sequence path points. Taking the collision probability as an index to indicate safety, local path points are optimized through path point decomposition and replacement strategy. Therefore, a collision-probability-based continuous optimal hopping trajectory can be generated to realize safe and precise motion. Finally, with the simulated hazardous terrain based on the small body 433 Eros, the effectiveness of the proposed method is verified by numerical analysis.File | Dimensione | Formato | |
---|---|---|---|
ZHAOC01-23.pdf
Accesso riservato
:
Publisher’s version
Dimensione
4.31 MB
Formato
Adobe PDF
|
4.31 MB | Adobe PDF | Visualizza/Apri |
ZHAOC_OA_01-23.pdf
Open Access dal 28/01/2024
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.